On the Functional Interchangeability, Oxidant versus Reductant, of Members of the Thioredoxin Superfamily

Author:

Debarbieux Laurent1,Beckwith Jon1

Affiliation:

1. Department of Microbiology and Molecular Genetics, Harvard Medical School, Boston, Massachusetts 02115

Abstract

ABSTRACT Escherichia coli thioredoxin 1 has been characterized in vivo and in vitro as one of the most efficient reductants of disulfide bonds. Nevertheless, under some conditions, thioredoxin 1 can also act in vivo as an oxidant, promoting formation of disulfide bonds in the cytoplasm (E. J. Stewart, F. Åslund, and J. Beckwith, EMBO J. 17:5543–5550, 1998). We recently showed that when a signal sequence is attached to thioredoxin 1 it is exported to the periplasm, where it can also act as an oxidant, replacing the normal periplasmic catalyst of disulfide bond formation, DsbA, in oxidizing cell envelope proteins (L. Debarbieux and J. Beckwith, Proc. Natl. Acad. Sci. USA 95:10751–10756, 1998). Here we report pulse-chase studies of the efficiency of disulfide bond formation in strains exporting thioredoxin 1 and more-oxidizing variants of it. While the exported thioredoxin 1 itself substantially speeds up the kinetics of disulfide bond formation, a version of this protein containing the DsbA active site exhibits kinetics that are indistinguishable from those of the DsbA protein itself. Further, we confirm the findings of Jonda et al. (S. Jonda, M. Huber-Wunderlich, R. Glockshuber, and E. Mössner, EMBO J. 18:3271–3281, 1999), who found that DsbB is responsible for the oxidation of exported thioredoxin 1, and we report the detection of a disulfide-bonded DsbB-thioredoxin 1 complex. Finally, we have found that under conditions of high-level expression of exported thioredoxin 1, the protein can act as both an oxidant and a reductant.

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

Cited by 52 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3