In Vitro Community Synergy between Bacterial Soil Isolates Can Be Facilitated by pH Stabilization of the Environment

Author:

Herschend Jakob1,Koren Klaus2,Røder Henriette L.1,Brejnrod Asker3,Kühl Michael45,Burmølle Mette1

Affiliation:

1. Section for Microbiology, University of Copenhagen, Copenhagen, Denmark

2. Department of Bioscience-Microbiology, Aarhus University, Aarhus, Denmark

3. Section for Metabolic Genetics, Novo Nordisk Foundation Center for Basic Metabolic Research, Copenhagen, Denmark

4. Marine Biological Section, University of Copenhagen, Copenhagen, Denmark

5. Climate Change Cluster, University of Technology Sydney, Ultimo, New South Wales, Australia

Abstract

Understanding interspecies interactions in bacterial communities is important for unraveling species dynamics in naturally occurring communities. These dynamics are fundamental for identifying evolutionary drivers and for the development of efficient biotechnological industry applications. Recently, pH interplay among community members has been identified as a factor affecting community development, and pH stabilization has been demonstrated to result in enhanced community growth. The use of model communities in which the effect of changing pH level can be attributed to specific species contributes to the investigation of community developmental drivers. This contributes to assessment of the extent of emergent behavior and members' contributions to community development. Here, we show that pH stabilization of the microenvironment in vitro in a synthetic coisolated model community results in synergistic growth. This observation adds to the growing diversity of community interactions leading to enhanced community growth and hints toward pH as a strong driver for community development in diverse environments.

Funder

Villum Fonden

Publisher

American Society for Microbiology

Subject

Ecology,Applied Microbiology and Biotechnology,Food Science,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3