Effect of Heat Shock and Mutations in ClpL and ClpP on Virulence Gene Expression in Streptococcus pneumoniae

Author:

Kwon Hyog-Young1,Kim Seung-Whan1,Choi Moo-Hyun1,Ogunniyi A. David2,Paton James C.2,Park Sin-Hee1,Pyo Suhk-Neung1,Rhee Dong-Kwon1

Affiliation:

1. College of Pharmacy, Sungkyunkwan University, Suwon 440-746, Korea

2. School of Molecular and Biomedical Science, The University of Adelaide, Adelaide SA 5005, Australia

Abstract

ABSTRACT Spread of Streptococcus pneumoniae from the nasopharynx to other host tissues would require the organism to adapt to a variety of environmental conditions. Since heat shock proteins are induced by environmental stresses, we investigated the effect of heat shock on ClpL and ClpP synthesis and the effect of clpL and clpP mutations on the expression of key pneumococcal virulence genes. Pulse labeling with [ 35 S]methionine and chase experiments as well as immunoblot analysis demonstrated that ClpL, DnaK, and GroEL were stable. Purified recombinant ClpL refolded urea-denatured rhodanese in a dose-dependent manner, demonstrating ClpL's chaperone activity. Although growth of the clpL mutant was not affected at 30 or 37°C, growth of the clpP mutant was severely affected at these temperatures. However, both clpL and clpP mutants were sensitive to 43°C. Although it was further induced by heat shock, the level of expression of ClpL in the clpP mutant was high at 30°C, suggesting that ClpP represses expression of ClpL. Furthermore, the clpP mutation significantly attenuated the virulence of S. pneumoniae in a murine intraperitoneal infection model, whereas the clpL mutation did not. Interestingly, immunoblot and real-time reverse transcription-PCR analysis demonstrated that pneumolysin and pneumococcal surface antigen A were induced by heat shock in wild-type S. pneumoniae. Other virulence genes were also affected by heat shock and clpL and clpP mutations. Virulence gene expression seems to be modulated not only by heat shock but also by the ClpL and ClpP proteases.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Immunology,Microbiology,Parasitology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3