Effect of agitation and terminal subcultures on yield and speed of detection of the Oxoid Signal blood culture system versus the BACTEC radiometric system

Author:

Weinstein M P1,Mirrett S1,Reimer L G1,Reller L B1

Affiliation:

1. Microbiology Laboratory, Robert Wood Johnson University Hospital, New Brunswick, New Jersey 08901.

Abstract

In an initial evaluation, we found the Oxoid Signal blood culture system inferior to the BACTEC radiometric system for detection of some microorganisms causing septicemia (M. P. Weinstein, S. Mirrett, and L. B. Reller, J. Clin. Microbiol. 26:962-964, 1988). To determine whether modified processing of the Oxoid Signal blood culture system could improve its yield and speed of detecting positive cultures relative to the BACTEC radiometric system, we agitated all Oxoid bottles during the first 24 to 48 h of incubation and performed aerobic and anaerobic subcultures of all Oxoid bottles negative after 7 days of incubation. These modifications improved the overall performance of the Oxoid system, particularly with regard to the yield of streptococci, members of the family Enterobacteriaceae, and Haemophilus, Neisseria, and Acinetobacter spp. The speed of detecting positive cultures also was improved, especially within the first 24 h of incubation. However, the BACTEC system still detected more positive cultures (P less than 0.005), especially of obligate aerobes such as Pseudomonas aeruginosa (P less than 0.05) and yeasts (P less than 0.005). The BACTEC system also detected positive cultures earlier than the Oxoid system (e.g., at 24 h of incubation, 70.5% of BACTEC positive cultures detected versus 62.1% of Oxoid positive cultures detected). Further modifications of the Oxoid system which might include a revised medium, additional processing modifications, altered headspace atmosphere, or a complementary second broth medium should be considered, since the system is attractive in concept and is easy to use in the clinical laboratory.

Publisher

American Society for Microbiology

Subject

Microbiology (medical)

Cited by 35 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Nonautomated Blood Cultures in a Low-Resource Setting: Optimizing the Timing of Blind Subculture;The American Journal of Tropical Medicine and Hygiene;2021-02-03

2. Development of new methods for detecting bloodstream pathogens;Clinical Microbiology and Infection;2020-03

3. Critical factors in the recovery of pathogenic microorganisms in blood;Clinical Microbiology and Infection;2020-02

4. Commercial Blood Culture Systems and Methods;Manual of Commercial Methods in Clinical Microbiology;2016-04-01

5. Laboratory Detection of Bacteremia and Fungemia;Manual of Clinical Microbiology;2015-05-26

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3