Fratricide Is Essential for Efficient Gene Transfer between Pneumococci in Biofilms

Author:

Wei Hua,Håvarstein Leiv Sigve

Abstract

ABSTRACTStreptococcus pneumoniaeand a number of commensal streptococcal species are competent for natural genetic transformation. The natural habitat of these bacteria is multispecies biofilms in the human oral cavity and nasopharynx. Studies investigating lateral transfer of virulence and antibiotic resistance determinants among streptococci have shown that interspecies as well as intraspecies gene exchange takes place in these environments. We have previously shown that the action of a competence-specific murein hydrolase termed CbpD strongly increases the rate of gene transfer between pneumococci grown in liquid cultures. CbpD is the key component of a bacteriolytic mechanism termed the fratricide mechanism. It is secreted by competent pneumococci and mediates the release of donor DNA from sensitive streptococci present in the same environment. However, in nature, gene exchange between streptococci takes place in biofilms and not in liquid cultures. In the present study, we therefore investigated whether CbpD affects the rate of gene transfer in laboratory-grown biofilms. Our results show that the fratricide mechanism has a strong positive impact on intrabiofilm gene exchange, indicating that it is important for active acquisition of homologous donor DNA under natural conditions. Furthermore, we found that competent biofilm cells ofS. pneumoniaeacquire a Novrmarker much more efficiently from neighboring cells than from the growth medium. Efficient lysis of target cells requires that CbpD act in conjunction with the murein hydrolase LytC. In contrast, the major autolysin LytA does not seem to be important for fratricide-mediated gene exchange in a biofilm environment.

Publisher

American Society for Microbiology

Subject

Ecology,Applied Microbiology and Biotechnology,Food Science,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3