Biophysical Characterization of the Stability of the 150-Kilodalton Botulinum Toxin, the Nontoxic Component, and the 900-Kilodalton Botulinum Toxin Complex Species

Author:

Chen Flora1,Kuziemko Geoffrey M.23,Stevens Raymond C.23

Affiliation:

1. Graduate Group in Biophysics1 and

2. Department of Chemistry,2 University of California, and

3. Material Sciences Division, Lawrence Berkeley National Laboratory,3 Berkeley, California 94720

Abstract

ABSTRACT Botulinum neurotoxin serotype A is initially released from the bacterium Clostridium botulinum as a stable 900-kDa complex. The serotype A 900-kDa complex is one of the forms of the toxin being used as a therapeutic agent for the treatment of various neuromuscular disorders. Previous experiments have demonstrated that the 900-kDa complex form of the toxin protects the toxin from the harsh conditions of the gastrointestinal tract. To provide molecular level details of the stability and equilibrium of the 900-kDa complex, the nontoxic component, and the toxic (botulinum neurotoxin) component, the three species have been investigated with a series of biophysical techniques at the molecular level (dynamic light scattering, proteolysis, circular dichroism, pH incubations, and agglutination assays). These experiments were conducted under harsh conditions which mimic those found along the gastrointestinal tract. Separately, exposure to denaturing and proteolytic conditions degrades both the botulinum neurotoxin and the nontoxic component. In the 900-kDa complex, the botulinum neurotoxin is protected during exposure to the gastrointestinal environment and the nontoxic component is slightly modified. Surprisingly, the toxin protects the ability of the nontoxic component to agglutinate erythrocytes. Contrary to previous reports, the purified 900-kDa complex did not have agglutination ability until after exposure to the proteolytic conditions. These experiments provide new evidence and detail for the theory that the nontoxic component and the toxic component protect one another during exposure to harsh conditions, and a molecular model is presented for the passage of the toxin through the gastrointestinal tract.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Immunology,Microbiology,Parasitology

Reference37 articles.

1. Observations on receptor specific proteins. II. Haemagglutination and haemagglutination-inhibition reactions of Clostridial botulinum types A, C, D and E haemagglutinins.;Balding P.;Immunology,1973

2. Beck W. S. Liem K. F. Simpson A. R. Life an introduction to biology 3rd ed. 1991 666 676 Harper Collins Publishers Inc. New York N.Y

3. Botulinum neurotoxin A selectively cleaves the synaptic protein SNAP-25.;Blasl J.;Nature,1993

4. The N-terminal half of the heavy chain of botulinum type A neurotoxin forms channels in planar phospholipid bilayers.;Blaustein R. O.;FEBS Lett.,1987

5. Antibody mapping to domains of botulinum neurotoxin serotype A in the complexed and uncomplexed forms

Cited by 102 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3