YopJ of Yersinia spp. Is Sufficient To Cause Downregulation of Multiple Mitogen-Activated Protein Kinases in Eukaryotic Cells

Author:

Palmer Lance E.1,Pancetti Alessandra R.1,Greenberg Steven2,Bliska James B.1

Affiliation:

1. Department of Molecular Genetics and Microbiology, School of Medicine, State University of New York at Stony Brook, Stony Brook, New York 11794-5222,1and

2. Departments of Medicine and Pharmacology, Columbia University College of Physicians and Surgeons, New York, New York 100322

Abstract

ABSTRACT Pathogenic Yersinia spp. utilize a plasmid-encoded type III secretion system to deliver a set of Yop effector proteins into eukaryotic cells. Previous studies have shown that the effector YopJ is required for Yersinia to cause downregulation of the mitogen-activated protein (MAP) kinases c-Jun N-terminal kinase (JNK), p38, and extracellular signal-regulated kinase (ERK) 1 and 2 in infected macrophages. Here we demonstrate that YopJ is sufficient to cause downregulation of multiple MAP kinases in eukaryotic cells. Cellular fractionation experiments confirmed that YopJ is delivered into the cytoplasmic fraction of macrophages by the type III system. Production of YopJ in COS-1 cells by transfection significantly reduced (5- to 10-fold) activation of JNK, p38, and ERK in response to several different stimuli, including serum and tumor necrosis factor alpha. JNK activation mediated by RacV12, an activated mutant of Rac1, was also blocked by YopJ in COS-1 cells, indicating that YopJ acts downstream of this small GTPase to downregulate MAP kinase signaling. Analysis of transfected COS-1 cells by immunofluorescence microscopy revealed that YopJ is recruited from the cytoplasmic compartment to the cell periphery in response to stimuli (e.g., serum) that induce membrane ruffling. These data indicate that YopJ functions as a “MAP kinase toxin” to selectively block nuclear responses that are triggered by Yersinia -host cell interaction.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Immunology,Microbiology,Parasitology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3