The Mannose Receptor Mediates Uptake of Pathogenic and Nonpathogenic Mycobacteria and Bypasses Bactericidal Responses in Human Macrophages

Author:

Astarie-Dequeker Catherine1,N’Diaye Elsa-Noah1,Le Cabec Veronique1,Rittig Michael G.2,Prandi Jacques1,Maridonneau-Parini Isabelle1

Affiliation:

1. Institut de Pharmacologie et de Biologie Structurale, Centre National de la Recherche Scientifique, UPR 9062, 31077 Toulouse, France,1 and

2. Department of Anatomy I, University of Erlangen, D-91054 Erlangen, Germany2

Abstract

ABSTRACT The mannose receptor (MR) is involved in the phagocytosis of pathogenic microorganisms. Here we investigated its role in the bactericidal functions of human monocyte-derived macrophages (MDMs), using (i) trimannoside-bovine serum albumin (BSA)-coated latex beads and zymosan as particulate ligands of the MR, and (ii) mannan and mannose-BSA as soluble ligands. We show that phagocytosis of mannosylated latex beads did not elicit the production of O 2 . Zymosan, which is composed of α-mannan and β-glucan, was internalized by the MR and a β-glucan receptor, but the production of O 2 was triggered only by phagocytosis through the β-glucan receptor. Activation and translocation of Hck, a Src family tyrosine kinase located on lysosomes, has previously been used as a marker of fusion between lysosomes and phagosomes in human neutrophils. In MDMs, Hck was activated and recruited to phagosomes containing zymosan later than LAMP-1 and CD63. Phagosomes containing mannosylated latex beads fused with LAMP-1 and CD63 vesicles but not with the Hck compartment, and the kinase was not activated. We also demonstrate that the MR was unable to distinguish between nonpathogenic and pathogenic mycobacteria, as they were internalized at similar rates by this receptor, indicating that this route of entry cannot be considered as a differential determinant of the intracellular fate of mycobacteria. In conclusion, MR-dependent phagocytosis is coupled neither to the activation of NADPH oxidase nor to the maturation of phagosomes until fusion with the Hck compartment and therefore constitutes a safe portal of entry for microorganisms.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Immunology,Microbiology,Parasitology

Reference58 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3