Cryptococcus neoformans Resides in an Acidic Phagolysosome of Human Macrophages

Author:

Levitz Stuart M.1,Nong Shu-Hua1,Seetoo Kurt F.2,Harrison Thomas S.3,Speizer Robert A.1,Simons Elizabeth R.2

Affiliation:

1. Evans Memorial Department of Clinical Research and Department of Medicine1 and

2. Department of Biochemistry,2 Boston University Medical Center, Boston, Massachusetts, and

3. Department of Infectious Diseases, St. George’s Hospital Medical School, London, England3

Abstract

ABSTRACT Recently, we demonstrated that human monocyte-derived macrophages (MDM) treated with chloroquine or ammonium chloride had markedly increased antifungal activity against the AIDS-related pathogen Cryptococcus neoformans . Both of these agents raise the lysosomal pH, which suggested that the increased antifungal activity was a function of alkalinizing the phagolysosome. Moreover, there was an inverse correlation between growth of C. neoformans in cell-free media and pH. These data suggested that C. neoformans was well adapted to survive within acidic compartments. To test this hypothesis, we performed studies to determine the pH of human MDM and neutrophil phagosomes containing C. neoformans . Fungi were labeled with the isothiocyanate derivatives of two pH-sensitive probes: fluorescein and 2′,7′-difluorofluorescein (Oregon Green). These probes have pK a s of 6.4 and 4.7, respectively, allowing sensitive pH detection over a broad range. The phagosomal pH averaged approximately 5 after ingestion of either live or heat-killed fungi and remained relatively constant over time, which suggested that C. neoformans does not actively regulate the pH of its phagosome. The addition of 10 and 100 μM chloroquine resulted in increases in the phagosomal pH from a baseline of 5.1 up to 6.5 and 7.3, respectively. Finally, by immunofluorescence, colocalization of C. neoformans and the MDM lysosomal membrane protein LAMP-1 was demonstrated, establishing that fusion of C. neoformans -laden phagosomes with lysosomal compartments takes place. Thus, unlike many other intracellular pathogens, C. neoformans does not avoid fusion with macrophage lysosomal compartments but rather resides and survives in an acidic phagolysosome.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Immunology,Microbiology,Parasitology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3