Acyl-Homoserine Lactones Can Induce Virus Production in Lysogenic Bacteria: an Alternative Paradigm for Prophage Induction

Author:

Ghosh Dhritiman1,Roy Krishnakali1,Williamson Kurt E.2,Srinivasiah Sharath3,Wommack K. Eric3,Radosevich Mark1

Affiliation:

1. Biosystems Engineering & Soil Science Department, University of Tennessee, Knoxville, Tennessee 37996

2. Biology Department, College of William & Mary, Williamsburg, Virginia 23187

3. Delaware Biotechnology Institute, University of Delaware, Newark, Delaware 19711

Abstract

ABSTRACT Prophage typically are induced to a lytic cycle under stressful environmental conditions or when the host's survival is threatened. However, stress-independent, spontaneous induction also occurs in nature and may be cell density dependent, but the in vivo signal(s) that can trigger induction is unknown. In the present study, we report that acyl-homoserine lactones (AHL), the essential signaling molecules of quorum sensing in many gram-negative bacteria, can trigger phage production in soil and groundwater bacteria. This phenomenon also was operative in a λ lysogen of Escherichia coli . In model coculture systems, we monitored the real-time AHL production from Pseudomonas aeruginosa PAO1 using an AHL bioluminescent sensor and demonstrated that λ-prophage induction in E. coli was correlated with AHL production. As a working model in E. coli , we show that the induction responses of λ with AHL remained unaffected when recA was deleted, suggesting that this mechanism does not involve an SOS response. In the same λ lysogen we also demonstrated that sdiA , the AHL receptor, and rcsA , a positive transcriptional regulator of exopolysaccharide synthesis, are involved in the AHL-mediated induction process. These findings relate viral reproduction to chemical signals associated with high host cell abundance, suggesting an alternative paradigm for prophage induction.

Publisher

American Society for Microbiology

Subject

Ecology,Applied Microbiology and Biotechnology,Food Science,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3