Yeast Mre11 and Rad1 Proteins Define a Ku-Independent Mechanism To Repair Double-Strand Breaks Lacking Overlapping End Sequences

Author:

Ma Jia-Lin1,Kim Eun Mi1,Haber James E.2,Lee Sang Eun1

Affiliation:

1. Department of Molecular Medicine, Institute of Biotechnology, The University of Texas Health Science Center at San Antonio, San Antonio, Texas 78245

2. Rosenstiel Center and Department of Biology, Brandeis University, Waltham, Massachusetts 02454

Abstract

ABSTRACT End joining of double-strand breaks (DSBs) requires Ku proteins and frequently involves base pairing between complementary terminal sequences. To define the role of terminal base pairing in end joining, two oppositely oriented HO endonuclease cleavage sites separated by 2.0 kb were integrated into yeast chromosome III, where constitutive expression of HO endonuclease creates two simultaneous DSBs with no complementary end sequence. Lack of complementary sequence in their 3′ single-strand overhangs facilitates efficient repair events distinctly different from when the 3′ ends have a 4-bp sequence base paired in various ways to create 2- to 3-bp insertions. Repair of noncomplementary ends results in a set of nonrandom deletions of up to 302 bp, annealed by imperfect microhomology of about 8 to 10 bp at the junctions. This microhomology-mediated end joining (MMEJ) is Ku independent, but strongly dependent on Mre11, Rad50, and Rad1 proteins and partially dependent on Dnl4 protein. The MMEJ also occurs when Rad52 is absent, but the extent of deletions becomes more limited. The increased gamma ray sensitivity of rad1 Δ rad52 Δ yku70 Δ strains compared to rad52 Δ yku70 Δ strains suggests that MMEJ also contributes to the repair of DSBs induced by ionizing radiation.

Publisher

American Society for Microbiology

Subject

Cell Biology,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3