Affiliation:
1. Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio 44195
2. Department of Biostatistics, Epidemiology and Scientific Computing and Department of Biological and Medical Research, King Faisal Specialist Hospital and Research Center, Riyadh 11211, Saudi Arabia
Abstract
ABSTRACT
Adenylate/uridylate-rich element (ARE)-mediated mRNA turnover is an important regulatory component of gene expression for innate and specific immunity, in the hematopoietic system, in cellular growth regulation, and for many other cellular processes. This diversity is reflected in the distribution of AREs in the human genome, which we have established as a database of more than 900 ARE-containing genes that may utilize AREs as a means of controlling cellular mRNA levels. The p38 mitogen-activated protein kinase (MAP kinase) pathway has been implicated in regulating the stability of nine ARE-containing transcripts. Here we explored the entire spectrum of ARE-containing genes for p38-dependent regulation of ARE-mediated mRNA turnover with a custom cDNA array containing probes for 950 ARE mRNAs. The human monocytic cell line THP-1 treated with lipopolysaccharide (LPS) was used as a reproducible cellular model system that allowed us to precisely control the conditions of mRNA induction and decay in the absence and presence of the p38 inhibitor SB203580. This approach allowed us to establish an LPS-induced ARE mRNA expression profile in human monocytes and determine the half-lives of 470 AU-rich mRNAs. Most importantly, we identified 42 AU-rich genes, previously unrecognized, that show p38-dependent mRNA stabilization. In addition to a number of cytokines, several interesting novel AU-rich transcripts likely to play a role in macrophage activation by LPS exhibited p38-dependent transcript stabilization, including macrophage-specific colony-stimulating factor 1, carbonic anhydrase 2, Bcl2, Bcl2-like 2, and nuclear factor erythroid 2-like 2. Finally, the identification of the p38-dependent upstream activator MAP kinase kinase 6 as a member of this group identifies a positive feedback loop regulating macrophage signaling via p38 MAP kinase-dependent transcript stabilization.
Publisher
American Society for Microbiology
Subject
Cell Biology,Molecular Biology
Reference71 articles.
1. Adams, D. O., and T. A. Hamilton. 1984. The cell biology of macrophage activation. Annu. Rev. Immunol. 2 : 283-318.
2. Bakheet, T., M. Frevel, B. R. Williams, W. Greer, and K. S. Khabar. 2001. ARED: human AU-rich element-containing mRNA database reveals an unexpectedly diverse functional repertoire of encoded proteins. Nucleic Acids Res. 29 : 246-254.
3. Bevington P. R. and D. K. Robinson. 1992. Method of least squares p. 53-62. In P. R. Bevington and D. K. Robinson (ed.) Data reduction and error analysis for the physical sciences. WCB McGraw-Hill Boston Mass.
4. Brook, M., G. Sully, A. R. Clark, and J. Saklatvala. 2000. Regulation of tumour necrosis factor alpha mRNA stability by the mitogen-activated protein kinase p38 signalling cascade. FEBS Lett. 483 : 57-61.
5. Buzby, J. S., G. Brewer, and D. J. Nugent. 1999. Developmental regulation of RNA transcript destabilization by A + U-rich elements is AUF1-dependent. J. Biol. Chem. 274 : 33973-33978.
Cited by
262 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献