Identification of HiNF-P, a Key Activator of Cell Cycle-Controlled Histone H4 Genes at the Onset of S Phase

Author:

Mitra Partha1,Xie Rong-Lin1,Medina Ricardo1,Hovhannisyan Hayk1,Zaidi S. Kaleem1,Wei Yue2,Harper J. Wade2,Stein Janet L.1,van Wijnen André J.1,Stein Gary S.1

Affiliation:

1. Department of Cell Biology and Cancer Center, University of Massachusetts Medical School, Worcester, Massachusetts 01655

2. Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas 77030

Abstract

ABSTRACT At the G 1 /S phase cell cycle transition, multiple histone genes are expressed to ensure that newly synthesized DNA is immediately packaged as chromatin. Here we have purified and functionally characterized the critical transcription factor HiNF-P, which is required for E2F-independent activation of the histone H4 multigene family. Using chromatin immunoprecipitation analysis and ligation-mediated PCR-assisted genomic sequencing, we show that HiNF-P interacts with conserved H4 cell cycle regulatory sequences in vivo. Antisense inhibition of HiNF-P reduces endogenous histone H4 gene expression. Furthermore, we find that HiNF-P utilizes NPAT/p220, a substrate of the cyclin E/cyclin-dependent kinase 2 (CDK2) kinase complex, as a key coactivator to enhance histone H4 gene transcription. The biological role of HiNF-P is reflected by impeded cell cycle progression into S phase upon antisense-mediated reduction of HiNF-P levels. Our results establish that HiNF-P is the ultimate link in a linear signaling pathway that is initiated with the growth factor-dependent induction of cyclin E/CDK2 kinase activity at the restriction point and culminates in the activation of histone H4 genes through HiNF-P at the G 1 /S phase transition.

Publisher

American Society for Microbiology

Subject

Cell Biology,Molecular Biology

Cited by 64 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3