Extensive Loss of Heterozygosity Is Suppressed during Homologous Repair of Chromosomal Breaks

Author:

Stark Jeremy M.1,Jasin Maria1

Affiliation:

1. Cell Biology Program, Memorial Sloan-Kettering Cancer Center and Cornell University Graduate School of Medical Sciences, New York, New York 10021

Abstract

ABSTRACT Loss of heterozygosity (LOH) is a common genetic alteration in tumors and often extends several megabases to encompass multiple genetic loci or even whole chromosome arms. Based on marker and karyotype analysis of tumor samples, a significant fraction of LOH events appears to arise from mitotic recombination between homologous chromosomes, reminiscent of recombination during meiosis. As DNA double-strand breaks (DSBs) initiate meiotic recombination, a potential mechanism leading to LOH in mitotically dividing cells is DSB repair involving homologous chromosomes. We therefore sought to characterize the extent of LOH arising from DSB-induced recombination between homologous chromosomes in mammalian cells. To this end, a recombination reporter was introduced into a mouse embryonic stem cell line that has nonisogenic maternal and paternal chromosomes, as is the case in human populations, and then a DSB was introduced into one of the chromosomes. Recombinants involving alleles on homologous chromosomes were readily obtained at a frequency of 4.6 × 10 −5 ; however, this frequency was substantially lower than that of DSB repair by nonhomologous end joining or the inferred frequency of homologous repair involving sister chromatids. Strikingly, the majority of recombinants had LOH restricted to the site of the DSB, with a minor class of recombinants having LOH that extended to markers 6 kb from the DSB. Furthermore, we found no evidence of LOH extending to markers 1 centimorgan or more from the DSB. In addition, crossing over, which can lead to LOH of a whole chromosome arm, was not observed, implying that there are key differences between mitotic and meiotic recombination mechanisms. These results indicate that extensive LOH is normally suppressed during DSB-induced allelic recombination in dividing mammalian cells.

Publisher

American Society for Microbiology

Subject

Cell Biology,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3