Nucleotide Excision Repair- and Polymerase η-Mediated Error-Prone Removal of Mitomycin C Interstrand Cross-Links

Author:

Zheng Huyong1,Wang Xin1,Warren Amy J.2,Legerski Randy J.3,Nairn Rodney S.4,Hamilton Joshua W.2,Li Lei13

Affiliation:

1. Departments of Experimental Radiation Oncology

2. Department of Pharmacology and Toxicology, Dartmouth Medical School, Hanover, New Hampshire 03755

3. Molecular Genetics

4. Carcinogenesis, The University of Texas M. D. Anderson Cancer Center, Houston, Texas 77030

Abstract

ABSTRACT Interstrand cross-links (ICLs) make up a unique class of DNA lesions in which both strands of the double helix are covalently joined, precluding strand opening during replication and transcription. The repair of DNA ICLs has become a focus of study since ICLs are recognized as the main cytotoxic lesion inflicted by an array of alkylating compounds used in cancer treatment. As is the case for double-strand breaks, a damage-free homologous copy is essential for the removal of ICLs in an error-free manner. However, recombination-independent mechanisms may exist to remove ICLs in an error-prone fashion. We have developed an in vivo reactivation assay that can be used to examine the removal of site-specific mitomycin C-mediated ICLs in mammalian cells. We found that the removal of the ICL from the reporter substrate could take place in the absence of undamaged homologous sequences in repair-proficient cells, suggesting a cross-link repair mechanism that is independent of homologous recombination. Systematic analysis of nucleotide excision repair mutants demonstrated the involvement of transcription-coupled nucleotide excision repair and a partial requirement for the lesion bypass DNA polymerase η encoded by the human POLH gene. From these observations, we propose the existence of a recombination-independent and mutagenic repair pathway for the removal of ICLs in mammalian cells.

Publisher

American Society for Microbiology

Subject

Cell Biology,Molecular Biology

Cited by 133 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3