Activity of Metal-Responsive Transcription Factor 1 by Toxic Heavy Metals and H 2 O 2 In Vitro Is Modulated by Metallothionein

Author:

Zhang Bo1,Georgiev Oleg1,Hagmann Michael1,Günes Çagatay1,Cramer Mirjam1,Faller Peter2,Vasák Milan2,Schaffner Walter1

Affiliation:

1. Institut für Molekularbiologie

2. Biochemisches Institut, Universität Zürich, CH-8057 Zürich, Switzerland

Abstract

ABSTRACT Metallothioneins are small, cysteine-rich proteins that avidly bind heavy metals such as zinc, copper, and cadmium to reduce their concentration to a physiological or nontoxic level. Metallothionein gene transcription is induced by several stimuli, notably heavy metal load and oxidative stress. Transcriptional induction of metallothionein genes is mediated by the metal-responsive transcription factor 1 (MTF-1), an essential zinc finger protein that binds to specific DNA motifs termed metal-response elements. In cell-free DNA binding reactions with nuclear extracts, MTF-1 requires elevated zinc concentrations for efficient DNA binding but paradoxically is inactivated by other in vivo inducers such as cadmium, copper, and hydrogen peroxide. Here we have developed a cell-free, MTF-1-dependent transcription system which accurately reproduces the activation of metallothionein gene promoters not only by zinc but also by these other inducers. We found that while transcriptional induction by zinc can be achieved by elevated zinc concentration alone, induction by cadmium, copper, or H 2 O 2 additionally requires the presence of zinc-saturated metallothionein. This is explained by the preferential binding of cadmium or copper to metallothionein or its oxidation by H 2 O 2 ; the concomitant release of zinc in turn leads to the activation of transcription factor MTF-1. Conversely, thionein, the metal-free form of metallothionein, inhibits activation of MTF-1. The release of zinc from cellular components, including metallothioneins, and the sequestration of zinc by newly produced apometallothionein might be a basic mechanism to regulate MTF-1 activity upon cellular stress.

Publisher

American Society for Microbiology

Subject

Cell Biology,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3