The Dynamic Mobility of Histone H1 Is Regulated by Cyclin/CDK Phosphorylation

Author:

Contreras Alejandro1,Hale Tracy K.1,Stenoien David L.1,Rosen Jeffrey M.1,Mancini Michael A.1,Herrera Rafael E.1

Affiliation:

1. Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030

Abstract

ABSTRACT The linker histone H1 is involved in maintaining higher-order chromatin structures and displays dynamic nuclear mobility, which may be regulated by posttranslational modifications. To analyze the effect of H1 tail phosphorylation on the modulation of the histone's nuclear dynamics, we generated a mutant histone H1, referred to as M1-5, in which the five cyclin-dependent kinase phosphorylation consensus sites were mutated from serine or threonine residues into alanines. Cyclin E/CDK2 or cyclin A/CDK2 cannot phosphorylate the mutant in vitro. Using the technique of fluorescence recovery after photobleaching, we observed that the mobility of a green fluorescent protein (GFP)-M1-5 fusion protein is decreased compared to that of a GFP-wild-type H1 fusion protein. In addition, recovery of H1 correlated with CDK2 activity, as GFP-H1 mobility was decreased in cells with low CDK2 activity. Blocking the activity of CDK2 by p21 expression decreased the mobility of GFP-H1 but not that of GFP-M1-5. Finally, the level and rate of recovery of cyan fluorescent protein (CFP)-M1-5 were lower than those of CFP-H1 specifically in heterochromatic regions. These data suggest that CDK2 phosphorylates histone H1 in vivo, resulting in a more open chromatin structure by destabilizing H1-chromatin interactions.

Publisher

American Society for Microbiology

Subject

Cell Biology,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3