Author:
Bernstein J A,Porter J M,Challberg M D
Abstract
The adenovirus (Ad) DNA origin of replication was defined through an analysis of the DNA sequences necessary for the replication of plasmid DNAs with purified viral and cellular proteins. Results from several laboratories have shown that the origin consists of two functionally distinct domains: a 10-base-pair sequence present in the inverted terminal repetition (ITR) of all human serotypes and an adjacent sequence constituting the binding site for a cellular protein, nuclear factor I. To determine whether the same nucleotide sequences are necessary for origin function in vivo, we developed an assay for the replication of plasmid DNAs transfected into Ad5-infected cells. The assay is similar to that described by Hay et al. (J. Mol. Biol. 175:493-510, 1984). With this assay, plasmid DNA replication is dependent upon prior infection of cells with virus and only occurs with linear DNA molecules containing viral terminal sequences at each end. Replicated DNA is resistant to digestion with lambda-exonuclease, suggesting that a protein is covalently bound at both termini. A plasmid containing only the first 67 base pairs of the Ad2 ITR replicates as well as plasmids containing the entire ITR. Deletions or point mutations which reduce the binding of nuclear factor I to DNA in vitro reduce the efficiency of plasmid replication in vivo. A point mutation within the 10-base-pair conserved sequence has a similar effect upon replication. These results suggest that the two sequence domains of the Ad origin identified by in vitro studies are in fact important for viral DNA replication in infected cells. In addition, we found that two separate point mutations which lie outside these two sequence domains, and which have little or no effect upon DNA replication in vitro, also reduce the apparent efficiency of plasmid replication in vivo. Thus, there may be elements of the Ad DNA origin of replication which have not yet been identified by in vitro studies.
Publisher
American Society for Microbiology
Subject
Cell Biology,Molecular Biology
Cited by
19 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献