Lipid Peroxidation in the Killing of Phagocytized Pneumococci

Author:

Shohet S. B.1,Pitt J.2,Baehner R. L.3,Poplack D. G.4

Affiliation:

1. Departments of Medicine and Clinical Pathology, University of California, San Francisco Medical Center, San Francisco, California 94143

2. Department of Pediatrics, Columbia College of Physicians and Surgeons, New York, New York 10032

3. Department of Pediatrics, University of Indiana Medical Center, Bloomington, Indiana 47401

4. Department of Pediatrics, Harvard Medical School, Cambridge, Massachusetts 02138

Abstract

To directly examine the role of hydrogen peroxide in the killing of bacteria after ingestion by granulocytes, we have studied some of the events of phagocytosis of a mutant strain of pneumococci which is relatively deficient in peroxide production. The hydrogen peroxide-deficient pneumococci and the otherwise identical wild type were grown with [ 14 C]arachidonic and [ 3 H]palmitic acid labels to label their lipids with unsaturated and saturated fatty acids, respectively. They were then incubated with both normal and chronic granulomatous disease granulocytes. The rates of ingestion and bacterial killing and the stability of fatty acids in the cell-bacteria complex were followed. Radioactive carbon dioxide released from glucose was also independently followed to measure glucose oxidation. Ingestion was similar for all cell-bacteria combinations. Chronic granulomatous disease cells killed the peroxide-positive wild pneumococci much more effectively (20-fold) than the peroxide-deficient mutant. Normal cells killed both peroxide-positive and -negative strains effectively. A considerable loss of [ 14 C]arachidonic acid (∼40%) consistent with lipid peroxidation of this unsaturated fatty acid was observed in all normal cells and in chronic granulomatous disease cells with peroxide-positive pneumococci. However, no loss of [ 14 C]arachidonic acid occurred in chronic granulomatous disease cells with the peroxide-deficient pneumococci. No loss tritiated palmitic acid occurred in any cell-bacteria combination. Glucose oxidation was impaired in the chronic granulomatous disease cells in comparison to normal cells at rest and was especially impaired in chronic granulomatous disease cells ingesting the peroxide-deficient mutant pneumococci. This defect was partially corrected after phagocytosis of the peroxide-positive strain. These data directly support the hypothesis that bacterial killing is partially dependent upon an intact peroxide-generating system in the leukocyte-bacteria complex. Moreover, they indicate that bacterial lipid peroxidation is associated with the generation of peroxide during phagocytosis. Finally, they suggest that such peroxidation may contribute to effective phagocytic bacterial killing.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Immunology,Microbiology,Parasitology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3