Generation of coronavirus spike deletion variants by high-frequency recombination at regions of predicted RNA secondary structure

Author:

Rowe C L1,Fleming J O1,Nathan M J1,Sgro J Y1,Palmenberg A C1,Baker S C1

Affiliation:

1. Department of Microbiology and Immunology and Molecular Biology Program, Loyola University of Chicago, Stritch School of Medicine, Maywood, Illinois 60153, USA.

Abstract

Coronavirus RNA evolves in the central nervous systems (CNS) of mice during persistent infection. This evolution can be monitored by detection of a viral quasispecies of spike deletion variants (SDVs) (C. L. Rowe, S. C. Baker, M. J. Nathan, and J. O. Fleming, J. Virol. 71:2959-2969, 1997). We and others have found that the deletions cluster in the region from 1,200 to 1,800 nucleotides from the 5' end of the spike gene sequence, termed the "hypervariable" region. To address how SDVs might arise, we generated the predicted folding structures of the positive- and negative-strand senses of the entire 4,139-nt spike RNA sequence. We found that a prominent, isolated stem-loop structure is coincident with the hypervariable region in each structure. To determine if this predicted stem-loop is a "hot spot" for RNA recombination, we assessed whether this region of the spike is more frequently deleted than three other selected regions of the spike sequence in a population of viral sequences isolated from the CNS of acutely and persistently infected mice. Using differential colony hybridization of cloned spike reverse transcription-PCR products, we detected SDVs in which the hot spot was deleted but did not detect SDVs in which other regions of the spike sequence were exclusively deleted. Furthermore, sequence analysis and mapping of the crossover sites of 25 distinct patterns of SDVs showed that the majority of crossover sites clustered to two regions at the base of the isolated stem-loop, which we designated as high-frequency recombination sites 1 and 2. Interestingly, the majority of the left and right crossover sites of the SDVs were directly across from or proximal to one another, suggesting that these SDVs are likely generated by intramolecular recombination. Overall, our results are consistent with there being an important role for the spike RNA secondary structure as a contributing factor in the generation of SDVs during persistent infection.

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3