Submicellar complexes may initiate the fungicidal effects of cationic amphiphilic compounds on Candida albicans

Author:

Ahlström B1,Chelminska-Bertilsson M1,Thompson R A1,Edebo L1

Affiliation:

1. Department of Clinical Bacteriology, Göteborg University, Sweden. britta.ahlstrom@microbio.gu.se

Abstract

The killing of Candida albicans by a series of amphiphilic quaternary ammonium compounds (QACs) with different hydrocarbon chain lengths was closely related to the binding of the compounds to the cells and damage of the cell membranes. The membrane damage was measured as the level of release of the UV-absorbing material into the medium in which the cells were suspended and as the level of uptake of propidium iodide in individual cells by flow cytometry. It was shown that of the compounds tested, hexadecyltrimethylammonium bromide (cetyltrimethylammonium bromide [CTAB]) bound most efficiently. Tetradecyl betainate chloride (B14), tetradecanoylcholine bromide (C14), tetradecyltrimethylammonium bromide (TTAB), and dodecyltrimethylammonium bromide (DTAB) followed and had declining degrees of binding efficiency. The proportion of CTAB bound was almost total at concentrations up to the critical micelle concentration (CMC) of the compound, whereas that of B14 was somewhat smaller. For the two remaining tetradecyl compounds (C14 and TTAB), still smaller proportions were bound at low concentrations, but the proportions rose disproportionally at increasing concentrations to a distinct maximum at concentrations of 0.2 to 0.5 times the CMC. We propose that interfacial micelle-like aggregates are formed at the cell surface as a step in the binding process. An analogous, but less conspicuous, maximum was seen for DTAB. Thus, great differences in the binding affinity of QACs with different hydrocarbon chains at different concentrations to C. albicans were observed. These differences were related to the CMC of the compound. In contrast, the binding of TTAB to Salmonella typhimurium 395 MS was almost total at low as well as high concentrations until saturation was attained, indicating fundamental differences between binding to the yeast and binding to gram-negative bacteria. The importance of lipid-type complexes or aggregates to the antifungal effect of membrane-active substances are discussed.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Pharmacology (medical),Pharmacology

Reference38 articles.

1. Long-chain alkanoylcholines, a new category of soft antimicrobial agents that are enzymatically degradable;Ahlström B.;Antimicrob. Agents Chemother.,1995

2. Association of Official Analytical Chemists. 1984. Disinfectants p. 65-77. In Official methods of analysis 14th ed. Association of Official Analytical Chemists Arlington Va.

3. How do the polyene macrolide antibiotics affect the cellular membrane properties;Bolard J.;Biochim. Biophys. Acta,1986

4. Fluorimetric determination of critical micelle concentration avoiding interference from detergent charge;Chattopadhyay A.;Anal. Biochem.,1984

5. Liquid chromatographic monitoring of pseudocholinesterase activity: comparison of methods;Chelminska-Bertilsson M.;J. Chromatogr.,1992

Cited by 40 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3