Stochastic processes drive divergence of bacterial and fungal communities in sympatric wild insect species despite sharing a common diet

Author:

Zhu Yu-Xi1ORCID,Yang Tian-Yue1,Deng Jing-Huan1,Yin Yue2,Song Zhang-Rong3,Du Yu-Zhou1ORCID

Affiliation:

1. Department of Entomology, College of Plant Protection, Yangzhou University, Yangzhou, China

2. Institute for the Control of the Agrochemicals, Ministry of Agriculture and Rural Affairs, Beijing, China

3. Entomology and Nematology Department, University of Florida, Gainesville, Florida, USA

Abstract

ABSTRACT Arthropods harbor complex microbiota that play a pivotal role in host fitness. While multiple factors, like host species and diet, shape microbiota in arthropods, their impact on community assembly in wild insects remains largely unknown. In this study, we surveyed bacterial and fungal community assembly in nine sympatric wild insect species that share a common citrus fruit diet. Source tracking analysis suggested that these insects acquire some bacteria and fungi from the citrus fruit with varying degrees. Although sharing a common diet led to microbiota convergence, the diversity, composition, and network of both bacterial and fungal communities varied significantly among surveyed insect groups. Null model analysis indicated that stochastic processes, particularly dispersal limitation and drift, are primary drivers of structuring insect bacterial and fungal communities. Importantly, the influence of each community assembly process varied strongly depending on the host species. Thus, we proposed a speculative view that the host specificity of the microbiome and mycobiome assembly is widespread in wild insects despite sharing the same regional species pool. Overall, this research solidifies the importance of host species in shaping microbiomes and mycobiomes, providing novel insights into their assembly mechanisms in wild insects. IMPORTANCE Since the microbiome has been shown to impact insect fitness, a mechanistic understanding of community assembly has potentially significant applications but remains largely unexplored. In this paper, we investigate bacterial and fungal community assembly in nine sympatric wild insect species that share a common diet. The main findings indicate that stochastic processes drive the divergence of microbiomes and mycobiomes in nine sympatric wild insect species. These findings offer novel insights into the assembly mechanisms of microbiomes and mycobiomes in wild insects.

Funder

JST | Natural Science Foundation of Jiangsu Province

Publisher

American Society for Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3