Rarefaction is currently the best approach to control for uneven sequencing effort in amplicon sequence analyses

Author:

Schloss Patrick D.1ORCID

Affiliation:

1. Department of Microbiology & Immunology, University of Michigan, Ann Arbor, Michigan, USA

Abstract

ABSTRACT Considering it is common to find as much as 100-fold variation in the number of 16S rRNA gene sequences across samples in a study, researchers need to control for the effect of uneven sequencing effort. How to do this has become a contentious question. Some have argued that rarefying or rarefaction is “inadmissible” because it omits valid data. A number of alternative approaches have been developed to normalize and rescale the data that purport to be invariant to the number of observations. I generated community distributions based on 12 published data sets where I was able to assess the ability of multiple methods to control for uneven sequencing effort. Rarefaction was the only method that could control for variation in uneven sequencing effort when measuring commonly used alpha and beta diversity metrics. Next, I compared the false detection rate and power to detect true differences between simulated communities with a known effect size using various alpha and beta diversity metrics. Although all methods of controlling for uneven sequencing effort had an acceptable false detection rate when samples were randomly assigned to two treatment groups, rarefaction was consistently able to control for differences in sequencing effort when sequencing depth was confounded with treatment group. Finally, the statistical power to detect differences in alpha and beta diversity metrics was consistently the highest when using rarefaction. These simulations underscore the importance of using rarefaction to normalize the number of sequences across samples in amplicon sequencing analyses. IMPORTANCE Sequencing 16S rRNA gene fragments has become a fundamental tool for understanding the diversity of microbial communities and the factors that affect their diversity. Due to technical challenges, it is common to observe wide variation in the number of sequences that are collected from different samples within the same study. However, the diversity metrics used by microbial ecologists are sensitive to differences in sequencing effort. Therefore, tools are needed to control for the uneven levels of sequencing. This simulation-based analysis shows that despite a longstanding controversy, rarefaction is the most robust approach to control for uneven sequencing effort. The controversy started because of confusion over the definition of rarefaction and violation of assumptions that are made by methods that have been borrowed from other fields. Microbial ecologists should use rarefaction.

Funder

HHS | National Institutes of Health

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3