A CUG codon-adapted anchor-away toolkit for functional analysis of genes in Candida albicans

Author:

Teli Basharat Bashir1,Nagar Priyanka1,Priyadarshini Yumnam1,Poonia Poonam1,Natarajan Krishnamurthy1ORCID

Affiliation:

1. Laboratory of Eukaryotic Gene Regulation, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India

Abstract

ABSTRACT Promoter shutoff of essential genes in the diploid Candida albicans has often been insufficient to create tight, conditional null alleles due to leaky expression and has been a stumbling block in pathogenesis research. Moreover, homozygous deletion of non-essential genes has often been problematic due to the frequent aneuploidy in the mutant strains. Rapid, conditional depletion of essential genes by the anchor-away strategy has been successfully employed in Saccharomyces cerevisiae and other model organisms. Here, rapamycin mediates the dimerization of human FK506-binding protein (FKBP12) and FKBP12-rapamycin-binding (FRB) domain-containing target protein, resulting in relocalization to altered sub-cellular locations. In this work, we used the ribosomal protein Rpl13 as the anchor and took two nuclear proteins as targets to construct a set of mutants in a proof-of-principle approach. We first constructed a rapamycin-resistant C. albicans strain by introducing a dominant mutation in the CaTOR1 gene and a homozygous deletion of RBP1 , the ortholog of FKBP12 , a primary target of rapamycin. The FKBP12 and the FRB coding sequences were then CUG codon-adapted for C. albicans by site-directed mutagenesis. Anchor-away strains expressing the essential TBP1 gene or the non-essential SPT8 gene as FRB fusions were constructed. We found that rapamycin caused rapid cessation of growth of the TBP-AA strain within 15 minutes and the SPT8-AA strain phenocopied the constitutive filamentous phenotype of the spt8 Δ/ spt8 Δ mutant. Thus, the anchor-away toolbox for C. albicans developed here can be employed for genome-wide analysis to identify gene function in a rapid and reliable manner, further accelerating anti-fungal drug development in C. albicans . IMPORTANCE Molecular genetic studies thus far have identified ~27% open-reading frames as being essential for the vegetative growth of Candida albicans in rich medium out of a total 6,198 haploid set of open reading frames. However, a major limitation has been to construct rapid conditional alleles of essential C. albicans genes with near quantitative depletion of encoded proteins. Here, we have developed a toolbox for rapid and conditional depletion of genes that would aid studies of gene function of both essential and non-essential genes.

Funder

DST | Science and Engineering Research Board

University Grants Commission

Department of Science and Technology, Government of Rajasthan

Department of Biotechnology, Ministry of Science and Technology, India

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3