Analysis of Light- and Carbon-Specific Transcriptomes Implicates a Class of G-Protein-Coupled Receptors in Cellulose Sensing

Author:

Stappler Eva1,Dattenböck Christoph1,Tisch Doris2,Schmoll Monika1ORCID

Affiliation:

1. Center for Health and Bioresources, AIT Austrian Institute of Technology GmbH, Tulln, Austria

2. TU Wien, Insitute of Chemical Engineering, Research Area Molecular Biotechnology, Vienna, Austria

Abstract

In fungi, most metabolic processes are subject to regulation by light. For Trichoderma reesei , light-dependent regulation of cellulase gene expression is specifically shown. Therefore, we intended to unravel the relationship between regulation of enzymes by the carbon source and regulation of enzymes by light. Our two-dimensional analysis included inducing and repressing carbon sources which we used to compare light-specific regulation to dark-specific regulation and to rule out effects specific for a single carbon source. We found close connections with respect to gene regulation as well as significant differences in dealing with carbon in the environment in light and darkness. Moreover, our analyses showed an intricate regulation mechanism for substrate degradation potentially involving surface sensing and provide a basis for knowledge-based screening for strain improvement.

Funder

Austrian Science Fund

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3