Metabolic changes associated with polysaccharide utilization reduce susceptibility to some β-lactams in Bacteroides thetaiotaomicron

Author:

Nilson Rachael1ORCID,Penumutchu Swathi1,Pagano Francesco S.1,Belenky Peter1ORCID

Affiliation:

1. Department of Molecular Microbiology and Immunology, Brown University, Providence, Rhode Island, USA

Abstract

ABSTRACT Antibiotic therapy alters bacterial abundance and metabolism in the gut microbiome, leading to dysbiosis and opportunistic infections. Bacteroides thetaiotaomicron ( Bth ) is both a commensal in the gut and an opportunistic pathogen in other body sites. Past work has shown that Bth responds to β-lactam treatment differently depending on the metabolic environment both in vitro and in vivo . Studies of other bacteria show that an increase in respiratory metabolism independent of growth rate promotes susceptibility to bactericidal antibiotics. We propose that Bth enters a protected state linked to an increase in polysaccharide utilization and a decrease in the use of simple sugars. Here, we apply antibiotic susceptibility testing, transcriptomic analysis, and genetic manipulation to characterize this polysaccharide-mediated tolerance (PM tolerance) phenotype. We found that a variety of mono- and disaccharides increased the susceptibility of Bth to several different β-lactams compared to polysaccharides. Transcriptomics indicated a metabolic shift from reductive to oxidative branches of the tricarboxylic acid cycle on polysaccharides. Accordingly, supplementation with intermediates of central carbon metabolism had varying effects on PM tolerance. Transcriptional analysis also showed a decrease in the expression of the electron transport chain (ETC) protein NQR and an increase in the ETC protein NUO, when given fiber versus glucose. Deletion of NQR increased Bth susceptibility while deletion of NUO and a third ETC protein NDH2 had no effect. This work confirms that carbon source utilization modulates antibiotic susceptibility in Bth and that anaerobic respiratory metabolism and the ETC play an essential role. IMPORTANCE Antibiotics are indispensable medications that revolutionized modern medicine. However, their effectiveness is challenged by a large array of resistance and tolerance mechanisms. Treatment with antibiotics also disrupts the gut microbiome which can adversely affect health. Bacteroides are prevalent in the gut microbiome and yet are frequently involved in anaerobic infections. Thus, understanding how antibiotics affect these bacteria is necessary to implement proper treatment. Recent work has investigated the role of metabolism in antibiotic susceptibility in distantly related bacteria such as Escherichia coli . Using antibiotic susceptibility testing, transcriptomics, and genetic manipulation, we demonstrate that polysaccharides reduce β-lactam susceptibility when compared to monosaccharides. This finding underscores the profound impact of metabolic adaptation on the therapeutic efficacy of antibiotics. In the long term, this work indicates that modulation of metabolism could make Bacteroides more susceptible during infections or protect them in the context of the microbiome.

Funder

HHS | NIH | National Institute of Diabetes and Digestive and Kidney Diseases

Publisher

American Society for Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3