Genetic evidence for a regulated cysteine protease catalytic triad in LegA7, a Legionella pneumophila protein that impinges on a stress response pathway

Author:

Hershkovitz Dar1,Chen Emy J.23,Ensminger Alexander W.45ORCID,Dugan Aisling S.2,Conway Kaleigh T.23,Joyce Alex C.2,Segal Gil1ORCID,Isberg Ralph R.2ORCID

Affiliation:

1. The Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv, Israel

2. Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts, USA

3. Program in Genetics, Molecular and Cellular Biology, Graduate School of Biomedical Sciences Tufts University School of Medicine, Boston, Massachusetts, USA

4. Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada

5. Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada

Abstract

ABSTRACT Legionella pneumophila grows within membrane-bound vacuoles in phylogenetically diverse hosts. Intracellular growth requires the function of the Icm/Dot type-IVb secretion system, which translocates more than 300 proteins into host cells. A screen was performed to identify L. pneumophila proteins that stimulate mitogen-activated protein kinase (MAPK) activation, using Icm/Dot translocated proteins ectopically expressed in mammalian cells. In parallel, a second screen was performed to identify L. pneumophila proteins expressed in yeast that cause growth inhibition in MAPK pathway-stimulatory high-osmolarity medium. LegA7 was shared in both screens, a protein predicted to be a member of the bacterial cysteine protease family that has five carboxyl-terminal ankyrin repeats. Three conserved residues in the predicted catalytic triad of LegA7 were mutated. These mutations abolished the ability of LegA7 to inhibit yeast growth. To identify other residues important for LegA7 function, a generalizable selection strategy in yeast was devised to isolate mutants that have lost function and no longer cause growth inhibition on a high-osmolarity medium. Mutations were isolated in the two carboxyl-terminal ankyrin repeats, as well as an inter-domain region located between the cysteine protease domain and the ankyrin repeats. These mutations were predicted by AlphaFold modeling to localize to the face opposite from the catalytic site, arguing that they interfere with the positive regulation of the catalytic activity. Based on our data, we present a model in which LegA7 harbors a cysteine protease domain with an inter-domain and two carboxyl-terminal ankyrin repeat regions that modulate the function of the catalytic domain. IMPORTANCE Legionella pneumophila grows in a membrane-bound compartment in macrophages during disease. Construction of the compartment requires a dedicated secretion system that translocates virulence proteins into host cells. One of these proteins, LegA7, is shown to activate a stress response pathway in host cells called the mitogen-activated protein kinase (MAPK) pathway. The effects on the mammalian MAPK pathway were reconstructed in yeast, allowing the development of a strategy to identify the role of individual domains of LegA7. A domain similar to cysteine proteases is demonstrated to be critical for impinging on the MAPK pathway, and the catalytic activity of this domain is required for targeting this path. In addition, a conserved series of repeats, called ankyrin repeats, controls this activity. Data are provided that argue the interaction of the ankyrin repeats with unknown targets probably results in activation of the cysteine protease domain.

Funder

HHS | NIH | National Institute of General Medical Sciences

HHS | NIH | National Institute of Allergy and Infectious Diseases

United States-Israel Binational Science Foundation

Publisher

American Society for Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3