Biosynthesis of β-(1→5)-Galactofuranosyl Chains of Fungal-Type and O -Mannose-Type Galactomannans within the Invasive Pathogen Aspergillus fumigatus

Author:

Chihara Yuria1,Tanaka Yutaka2,Izumi Minoru3,Hagiwara Daisuke4,Watanabe Akira4,Takegawa Kaoru5,Kamei Katsuhiko4,Shibata Nobuyuki2,Ohta Kazuyoshi1,Oka Takuji1ORCID

Affiliation:

1. Department of Applied Microbial Technology, Faculty of Biotechnology and Life Science, Sojo University, Kumamoto, Japan

2. Department of Infection and Host Defense, Tohoku Medical and Pharmaceutical University, Sendai, Japan

3. Graduate School of Environmental and Life Science, Okayama University, Okayama, Japan

4. Medical Mycology Research Center, Chiba University, Chiba, Japan

5. Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, Fukuoka, Japan

Abstract

β-(1→5)-Galactofuranosyl residues are widely distributed in the subphylum Pezizomycotina of the phylum Ascomycota. Pezizomycotina includes many plant and animal pathogens. Although the structure of β-(1→5)-galactofuranosyl residues of galactomannans in filamentous fungi was discovered long ago, it remains unclear which enzyme is responsible for biosynthesis of this glycan. Fungal cell wall formation processes are complicated, and information concerning glycosyltransferases is essential for understanding them. In this study, we showed that GfsA and GfsC are responsible for the biosynthesis of all β-(1→5)-galactofuranosyl residues of fungal-type and O -mannose-type galactomannans. The data presented here indicate that β-(1→5)-galactofuranosyl residues are involved in cell growth, conidiation, polarity, and cell surface hydrophobicity. Our new understanding of β-(1→5)-galactofuranosyl residue biosynthesis provides important novel insights into the formation of the complex cell wall structure and the virulence of the members of the subphylum Pezizomycotina.

Funder

Noda Institute for Scientific Research

MEXT | Japan Society for the Promotion of Science

Chiba University

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3