Novel multidrug-resistant sublineages of Staphylococcus aureus clonal complex 22 discovered in India

Author:

Abrudan Monica I.12ORCID,Shamanna Varun34,Prasanna Akshatha3,Underwood Anthony1,Argimón Silvia1,Nagaraj Geetha3,Di Gregorio Sabrina5,Govindan Vandana3,Vasanth Ashwini3,Dharmavaram Sravani3,Kekre Mihir1,Aanensen David M.1,Ravikumar K. L.3

Affiliation:

1. Centre for Genomic Pathogen Surveillance, Big Data Institute, University of Oxford , Oxford, United Kingdom

2. Wellcome Genome Campus , Hinxton, United Kingdom

3. Central Research Laboratory, Kempegowda Institute of Medical Sciences , Bengaluru, India

4. Department of Biotechnology, NMAM Institute of Technology, Nitte (Deemed to be University) , Mangalore, India

5. Facultad de Farmacia y Bioquímica, Instituto de Investigaciones en Bacteriología y Virología Molecular (IBaViM), Universidad de Buenos Aires , Buenos Aires, Argentina

Abstract

ABSTRACT Staphylococcus aureus is a major pathogen in India causing community and nosocomial infections, but little is known about its molecular epidemiology and mechanisms of resistance in hospital settings. Here, we use whole-genome sequencing (WGS) to characterize 478 S . aureus clinical isolates (393 methicillin-resistant Staphylococcus aureus (MRSA) and 85 methicilin-sensitive Staphylococcus aureus (MSSA) collected from 17 sentinel sites across India between 2014 and 2019. Sequencing results confirmed that sequence type 22 (ST22) (142 isolates, 29.7%), ST239 (74 isolates, 15.48%), and ST772 (67 isolates, 14%) were the most common clones. An in-depth analysis of 175 clonal complex (CC) 22 Indian isolates identified two novel ST22 MRSA lineages, both Panton-Valentine leukocidin+, both resistant to fluoroquinolones and aminoglycosides, and one harboring the the gene for toxic shock syndrome toxin 1 (tst) . A temporal analysis of 1797 CC22 global isolates from 14 different studies showed that the two Indian ST22 lineages shared a common ancestor in 1984 (95% highest posterior density [HPD]: 1982–1986), as well as evidence of transmission to other parts of the world. Moreover, the study also gives a comprehensive view of ST2371, a sublineage of CC22, as a new emerging lineage in India and describes it in relationship with the other Indian ST22 isolates. In addition, the retrospective identification of a putative outbreak of multidrug-resistant (MDR) ST239 from a single hospital in Bangalore that persisted over a period of 3 years highlights the need for the implementation of routine surveillance and simple infection prevention and control measures to reduce these outbreaks. To our knowledge, this is the first WGS study that characterized CC22 in India and showed that the Indian clones are distinct from the EMRSA-15 clone. Thus, with the improved resolution afforded by WGS, this study substantially contributed to our understanding of the global population of MRSA. IMPORTANCE The study conducted in India between 2014 and 2019 presents novel insights into the prevalence of MRSA in the region. Previous studies have characterized two dominant clones of MRSA in India, ST772 and ST239, using whole-genome sequencing. However, this study is the first to describe the third dominant clone, ST22, using the same approach. The ST22 Indian isolates were analyzed in-depth, leading to the discovery of two new sublineages of hospital-acquired Staphylococcus aureus in India, both carrying antimicrobial resistance genes and mutations, which limit treatment options for patients. One of the newly characterized sublineages, second Indian cluster, carries the tsst-1 virulence gene, increasing the risk of severe infections. The geographic spread of the two novel lineages, both within India and internationally, could pose a global public health threat. The study also sheds light on ST2371 in India, a single-locus variant of ST22. The identification of a putative outbreak of MDR ST239 in a single hospital in Bangalore emphasizes the need for routine surveillance and simple infection prevention and control measures to reduce these outbreaks. Overall, this study significantly contributes to our understanding of the global population of MRSA, thanks to the improved resolution afforded by WGS.

Funder

National Institute for Health and Care Research

Wellcome Trust

UK Research and Innovation

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3