Defective pgsA contributes to increased membrane fluidity and cell wall thickening in Staphylococcus aureus with high-level daptomycin resistance

Author:

Freeman Christian D.1,Hansen Tayte2,Urbauer Ramona1,Wilkinson Brian J.3,Singh Vineet K.2,Hines Kelly M.1ORCID

Affiliation:

1. Department of Chemistry, University of Georgia, Athens, Georgia, USA

2. Department of Microbiology and Immunology, A.T. Still University of Health Sciences, Kirksville, Missouri, USA

3. School of Biological Sciences, Illinois State University, Normal, Illinois, USA

Abstract

ABSTRACT Daptomycin is a membrane-targeting last-resort antimicrobial therapeutic for the treatment of infections caused by methicillin- and/or vancomycin-resistant Staphylococcus aureus . In the rare event of failed daptomycin therapy, the source of resistance is often attributable to mutations directly within the membrane phospholipid biosynthetic pathway of S. aureus or in the regulatory systems that control cell envelope response and membrane homeostasis. Here we describe the structural changes to the cell envelope in a daptomycin-resistant isolate of S. aureus strain N315 that has acquired mutations in the genes most commonly reported associated with daptomycin resistance: mprF , yycG , and pgsA . In addition to the decreased phosphatidylglycerol (PG) levels that are the hallmark of daptomycin resistance, the mutant with high-level daptomycin resistance had increased branched-chain fatty acids (BCFAs) in its membrane lipids, increased membrane fluidity, and increased cell wall thickness. However, the successful utilization of isotope-labeled straight-chain fatty acids (SCFAs) in lipid synthesis suggested that the aberrant BCFA:SCFA ratio arose from upstream alteration in fatty acid synthesis rather than a structural preference in PgsA. Transcriptomics studies revealed that expression of pyruvate dehydrogenase ( pdhB ) was suppressed in the daptomycin-resistant isolate, which is known to increase BCFA levels. While complementation with an additional copy of pdhB had no effect, complementation of the pgsA mutation resulted in increased PG formation, reduction in cell wall thickness, restoration of normal BCFA levels, and increased daptomycin susceptibility. Collectively, these results demonstrate that pgsA contributes to daptomycin resistance through its influence on membrane fluidity and cell wall thickness, in addition to phosphatidylglycerol levels. IMPORTANCE The cationic lipopeptide antimicrobial daptomycin has become an essential tool for combating infections with Staphylococcus aureus that display reduced susceptibility to β-lactams or vancomycin. Since daptomycin's activity is based on interaction with the negatively charged membrane of S. aureus , routes to daptomycin-resistance occur through mutations in the lipid biosynthetic pathway surrounding phosphatidylglycerols and the regulatory systems that control cell envelope homeostasis. Therefore, there are many avenues to achieve daptomycin resistance and several different, and sometimes contradictory, phenotypes of daptomycin-resistant S. aureus , including both increased and decreased cell wall thickness and membrane fluidity. This study is significant because it demonstrates the unexpected influence of a lipid biosynthesis gene, pgsA , on membrane fluidity and cell wall thickness in S. aureus with high-level daptomycin resistance.

Funder

HHS | NIH | National Institute of Allergy and Infectious Diseases

Publisher

American Society for Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3