Phase variable colony variants are conserved across Gardnerella spp. and exhibit different virulence-associated phenotypes

Author:

Garcia Erin M.1ORCID,Klimowicz Amy K.1,Edupuganti Laahirie2,Topf Madeline A.1,Bhide Shraddha R.1,Slusser Dawson J.1,Leib Samantha M.1,Coddington Cayden L.1,Matveyev Andrey2,Buck Gregory A.23ORCID,Jefferson Kimberly K.3,Pepperell Caitlin S.14ORCID,Dillard Joseph P.1ORCID

Affiliation:

1. Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, Wisconsin, USA

2. Center for Microbiome Engineering and Data Analysis, Virginia Commonwealth University, Richmond, Virginia, USA

3. Department of Microbiology and Immunology, School of Medicine, Virginia Commonwealth University, Richmond, Virginia, USA

4. Department of Medicine, Division of Infectious Diseases, University of Wisconsin-Madison, Madison, Wisconsin, USA

Abstract

ABSTRACT The Gardnerella genus, comprising at least 13 species, is associated with the polymicrobial disorder bacterial vaginosis (BV). However, the details of BV pathogenesis are poorly defined, and the contributions made by individual species, including Gardnerella spp., are largely unknown. We report here that colony phenotypes characterized by size (large and small) and opacity (opaque and translucent) are phase variable and are conserved among all tested Gardnerella strains, representing at least 10 different species. With the hypothesis that these different variants could be an important missing piece to the enigma of how BV develops in vivo , we characterized their phenotypic, proteomic, and genomic differences. Beyond increased colony size, large colony variants showed reduced vaginolysin secretion and faster growth rate relative to small colony variants. The ability to inhibit the growth of Neisseria gonorrhoeae and commensal Lactobacillus species varied by strain and, in some instances, differed between variants. Proteomics analyses indicated that 127–173 proteins were differentially expressed between variants. Proteins with increased expression in large variants of both strains were associated with amino acid and protein synthesis and protein folding, whereas those increased in small variants were related to nucleotide synthesis, phosphate transport, ABC transport, and glycogen breakdown. Furthermore, whole genome sequencing analyses revealed an abundance of genes associated with variable homopolymer tracts, implicating slipped strand mispairing in Gardnerella phase variation and illuminating the potential for previously unrecognized heterogeneity within clonal populations. Collectively, these results suggest that phase variants may be primed to serve different roles in BV pathogenesis. IMPORTANCE Bacterial vaginosis is the most common gynecological disorder in women of childbearing age. Gardnerella species are crucial to the development of this dysbiosis, but the mechanisms involved in the infection are not understood. We discovered that Gardnerella species vary between two different forms, reflected in bacterial colony size. A slow-growing form makes large amounts of the toxin vaginolysin and is better able to survive in human cervix tissue. A fast-growing form is likely the one that proliferates to high numbers just prior to symptom onset and forms the biofilm that serves as a scaffold for multiple BV-associated anaerobic bacteria. Identification of the proteins that vary between different forms of the bacteria as well as those that vary randomly provides insight into the factors important for Gardnerella infection and immune avoidance.

Funder

HHS | NIH | National Institute of Allergy and Infectious Diseases

Publisher

American Society for Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3