Exploring the genotypic and phenotypic differences distinguishing Lactobacillus jensenii and Lactobacillus mulieris

Author:

Ene Adriana1,Banerjee Swarnali2,Wolfe Alan J.3ORCID,Putonti Catherine134ORCID

Affiliation:

1. Bioinformatics Program, Loyola University Chicago , Chicago, Illinois, USA

2. Department of Mathematics and Statistics, Loyola University Chicago , Chicago, Illinois, USA

3. Department of Microbiology and Immunology, Stritch School of Medicine, Loyola University Chicago , Maywood, Illinois, USA

4. Department of Biology, Loyola University Chicago , Chicago, Illinois, USA

Abstract

ABSTRACT Lactobacillus crispatus , Lactobacillus gasseri , Lactobacillus iners , and Lactobacillus jensenii are dominant species of the urogenital microbiota. Prior studies suggest that these Lactobacillus species play a significant role in the urobiome of healthy females. In our prior genomic analysis of all publicly available L. jensenii and Lactobacillus mulieris genomes at the time ( n = 43), we identified genes unique to these two closely related species. This motivated our further exploration here into their genotypic differences as well as into their phenotypic differences. First, we expanded genome sequence representatives of both species to 61 strains, including publicly available strains and nine new strains sequenced here. Genomic analyses conducted include phylogenetics of the core genome as well as biosynthetic gene cluster analysis and metabolic pathway analyses. Urinary strains of both species were assayed for their ability to utilize four simple carbohydrates. We found that L. jensenii strains can efficiently catabolize maltose, trehalose, and glucose, but not ribose, and L. mulieris strains can utilize maltose and glucose, but not trehalose and ribose. Metabolic pathway analysis clearly shows the lack of treB within L. mulieris strains, indicative of its inability to catabolize external sources of trehalose. While genotypic and phenotypic observations provide insight into the differences between these two species, we did not find any association with urinary symptom status. Through this genomic and phenotypic investigation, we identify markers that can be leveraged to clearly distinguish these two species in investigations of the female urogenital microbiota. IMPORTANCE We have expanded upon our prior genomic analysis of L. jensenii and L. mulieris strains, including nine new genome sequences. Our bioinformatic analysis finds that L. jensenii and L. mulieris cannot be distinguished by short-read 16S rRNA gene sequencing alone. Thus, to discriminate between these two species, future studies of the female urogenital microbiome should employ metagenomic sequencing and/or sequence species-specific genes, such as those identified here. Our bioinformatic examination also confirmed our prior observations of differences between the two species related to genes associated with carbohydrate utilization, which we tested here. We found that the transport and utilization of trehalose are key distinguishing traits of L. jensenii , which is further supported by our metabolic pathway analysis. In contrast with other urinary Lactobacillus species, we did not find strong evidence for either species, nor particular genotypes, to be associated with lower urinary tract symptoms (or the lack thereof).

Funder

Loyola University Chicago

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3