Nucleotide Excision Repair Protein Rad23 Regulates Cell Virulence Independent of Rad4 in Candida albicans

Author:

Feng Jia1,Yao Shuangyan1,Dong Yansong1,Hu Jing1,Whiteway Malcolm2,Feng Jinrong1ORCID

Affiliation:

1. Department of Pathogen Biology, School of Medicine, Nantong University, Nantong, Jiangsu, China

2. Biology Department, Concordia University, Montreal, Quebec, Canada

Abstract

Candida albicans remains a significant threat to the lives of immunocompromised people. An understanding of the virulence and infection ability of C. albicans cells in the mammalian host may help with clinical treatment and drug discovery. The DNA damage response pathway is closely related to morphology regulation and virulence, as well as the ability to survive in host cells. In this study, we checked the role of the nucleotide excision repair (NER) pathway, the key repair system that functions to remove a large variety of DNA lesions such as those caused by UV light, but whose function has not been well studied in C. albicans . We found that Rad23, but not Rad4, plays a role in virulence that appears independent of the function of the NER pathway. Our research revealed that the NER pathway represented by Rad4/Rad23 may not play a direct role in virulence but that Rad23 may play a unique role in regulating the transcription of virulence genes that may contribute to the virulence of C. albicans .

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3