Phage single-stranded DNA-binding protein or host DNA damage triggers the activation of the AbpAB phage defense system

Author:

Sasaki Takaomi1,Takita Saya1,Fujishiro Takashi1,Shintani Yunosuke1,Nojiri Satoki1,Yasui Ryota2,Yonesaki Tetsuro2,Otsuka Yuichi1ORCID

Affiliation:

1. Department of Biochemistry and Molecular Biology, Graduate School of Science and Engineering, Saitama University, Saitama, Japan

2. Department of Biological Sciences, Graduate School of Science, Osaka University, Osaka, Japan

Abstract

ABSTRACT Bacteria have developed various defense mechanisms against phages. Abortive infection (Abi), a bacterial defense mechanism, can be achieved through various means, including toxin-antitoxin systems, cyclic oligonucleotide-based antiphage signaling systems, and retrons. AbpA and AbpB (AbpAB) defend against many lytic phages harboring double-stranded DNA genomes in Escherichia coli ; however, how AbpAB senses phage infection and inhibits its propagation remains unclear. Here, we demonstrated that AbpAB inhibited the growth of the φX174 lytic phage with single-stranded DNA (ssDNA) as well as the lysogenization and induction of the Sakai prophage 5 lysogenic phage. The AbpAB defense system limits T4 and φX174 phage propagation via Abi. AbpA contains a nuclease domain at its N-terminus, and AbpB has an ATP-dependent RNA helicase domain; both domains are required for phage defense. This system is activated by phage Gp32 binding to ssDNA and inhibits E. coli growth. Without phage infection, DNA replication inhibitors or defects in the DNA repair factors RecB and RecC activate this system. Therefore, the E. coli AbpAB defense system may sense DNA-protein complexes, including the phage-encoded ssDNA-binding protein or those formed by interrupting host DNA replication or repair. IMPORTANCE Although numerous phage defense systems have recently been discovered in bacteria, how these systems defend against phage propagation or sense phage infections remains unclear. The Escherichia coli AbpAB defense system targets several lytic and lysogenic phages harboring DNA genomes. A phage-encoded single-stranded DNA-binding protein, Gp32, activates this system similar to other phage defense systems such as Retron-Eco8, Hachiman, ShosTA, Nhi, and Hna. DNA replication inhibitors or defects in DNA repair factors activate the AbpAB system, even without phage infection. This is one of the few examples of activating phage defense systems without phage infection or proteins. The AbpAB defense system may be activated by sensing specific DNA-protein complexes.

Funder

MEXT | Japan Society for the Promotion of Science

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3