Host MOSPD2 enrichment at the parasitophorous vacuole membrane varies between Toxoplasma strains and involves complex interactions

Author:

Ferrel Abel1ORCID,Romano Julia2,Panas Michael W.1ORCID,Coppens Isabelle2,Boothroyd John C.1

Affiliation:

1. Department of Microbiology and Immunology, Stanford School of Medicine , Stanford, California, USA

2. Department of Molecular Microbiology and Immunology, Johns Hopkins University Bloomberg School of Public Health , Baltimore, Maryland, USA

Abstract

ABSTRACT Toxoplasma gondii is an obligate, intracellular parasite. Infection of a cell produces a unique niche for the parasite named the parasitophorous vacuole (PV) initially composed of host plasma membrane invaginated during invasion. The PV and its membrane (parasitophorous vacuole membrane [PVM]) are subsequently decorated with a variety of parasite proteins allowing the parasite to optimally grow in addition to manipulate host processes. Recently, we reported a proximity-labeling screen at the PVM–host interface and identified host endoplasmic reticulum (ER)-resident motile sperm domain-containing protein 2 (MOSPD2) as being enriched at this location. Here we extend these findings in several important respects. First, we show that the extent and pattern of host MOSPD2 association with the PVM differ dramatically in cells infected with different strains of Toxoplasma . Second, in cells infected with Type I RH strain, the MOSPD2 staining is mutually exclusive with regions of the PVM that associate with mitochondria. Third, immunoprecipitation and liquid chromatography tandem mass spectrometry (LC-MS/MS) with epitope-tagged MOSPD2-expressing host cells reveal strong enrichment of several PVM-localized parasite proteins, although none appear to play an essential role in MOSPD2 association. Fourth, most MOSPD2 associating with the PVM is newly translated after infection of the cell and requires the major functional domains of MOSPD2, identified as the CRAL/TRIO domain and tail anchor, although these domains were not sufficient for PVM association. Lastly, ablation of MOSPD2 results in, at most, a modest impact on Toxoplasma growth in vitro . Collectively, these studies provide new insight into the molecular interactions involving MOSPD2 at the dynamic interface between the PVM and the host cytosol. IMPORTANCE Toxoplasma gondii is an intracellular pathogen that lives within a membranous vacuole inside of its host cell. This vacuole is decorated by a variety of parasite proteins that allow it to defend against host attack, acquire nutrients, and interact with the host cell. Recent work identified and validated host proteins enriched at this host–pathogen interface. Here, we follow up on one candidate named MOSPD2 shown to be enriched at the vacuolar membrane and describe it as having a dynamic interaction at this location depending on a variety of factors. Some of these include the presence of host mitochondria, intrinsic domains of the host protein, and whether translation is active. Importantly, we show that MOSPD2 enrichment at the vacuole membrane differs between strains indicating active involvement of the parasite with this phenotype. Altogether, these results shed light on the mechanism and role of protein associations in the host–pathogen interaction.

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3