Disruption to de novo uridine biosynthesis alters β-1,3-glucan masking in Candida albicans

Author:

Mangrum Mikayla M.1ORCID,Vogel Amanda K.2,Wagner Andrew S.1,King Ainsley E.1,Miao Jian3,Zhou Yue1,Phillips Elise K.1ORCID,Peters Brian M.45ORCID,Reynolds Todd B.1ORCID

Affiliation:

1. Department of Microbiology, University of Tennessee, Knoxville, Tennessee, USA

2. Integrated Program in Biomedical Sciences, College of Graduate Health Sciences, University of Tennessee Health Science Center, Memphis, Tennessee, USA

3. Pharmaceutical Sciences Program, College of Graduate Health Sciences, University of Tennessee Health Science Center, Memphis, Tennessee, USA

4. Department of Clinical Pharmacy and Translational Science, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee, USA

5. Department of Microbiology, Immunology, and Biochemistry, College of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee, USA

Abstract

ABSTRACT The uridine derivatives UDP-glucose and UDP- N -acetylglucosamine are important for cell wall construction as they are the precursors for the synthesis of β-1,3-glucan and chitin, respectively. Previous studies have demonstrated attenuated virulence of uridine auxotrophs in mice, which has been attributed to insufficient uridine levels for growth in the host. We have discovered that uridine deprivation in the uridine auxotroph ura3 ΔΔ disrupts cell wall architecture by increasing surface mannans, exposing β-1,3-glucan and chitin, and decreasing UDP-sugar levels. Cell wall architecture and UDP-sugars can be rescued with uridine supplementation. The cell wall architectural disruptions in the ura3 ΔΔ mutant also impact immune activation since the mutant elicited greater TNFα secretion from RAW264.7 macrophages than wild type. To determine if cell wall defects contributed to decreased virulence in the ura3 ΔΔ mutant, we used a murine model of systemic infection. Mice infected with the ura3 ΔΔ mutant exhibited increased survival and reduced kidney fungal burden compared with mice infected with wild type. However, suppression of the immune response with cyclophosphamide did not rescue virulence in mice infected with the ura3 ΔΔ mutant, indicating the attenuation in virulence of uridine auxotrophs can be attributed to decreased growth in the host but not increased exposure of β-1,3-glucan. Moreover, the ura3 ΔΔ mutant is unable to grow on ex vivo kidney agar, which demonstrates its inability to colonize the kidneys due to poor growth. Thus, although uridine auxotrophy elicits changes to cell wall architecture that increase the exposure of immunogenic polymers, metabolic fitness costs more strongly drive the observed virulence attenuation. IMPORTANCE Candida albicans is a common cause of bloodstream infections (candidemia). Treatment of these bloodstream infections is made difficult because of increasing antifungal resistance and drug toxicity. Thus, new tactics are needed for antifungal drug development, with immunotherapy being of particular interest. The cell wall of C. albicans is composed of highly immunogenic polymers, particularly β-1,3-glucan. However, β-1,3-glucan is naturally masked by an outer layer of mannoproteins, which hampers the detection of the fungus by the host immune system. Alteration in cell wall components has been shown to increase β-1,3-glucan exposure; however, it is unknown how the inability to synthesize precursors to cell wall components affects unmasking. Here, we demonstrate how cell wall architecture is altered in response to a deficit in precursors for cell wall synthesis and how uridine is a crucial component of these precursors.

Funder

HHS | National Institutes of Health

Publisher

American Society for Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3