Crystal Structure of Porcine Reproductive and Respiratory Syndrome Virus Leader Protease Nsp1α

Author:

Sun Yuna1,Xue Fei2,Guo Yu3,Ma Ming1,Hao Ning1,Zhang Xuejun C.1,Lou Zhiyong2,Li Xuemei1,Rao Zihe123

Affiliation:

1. National Laboratory of Macromolecules, Institute of Biophysics, Chinese Academy of Science, Beijing 100101, China

2. Structural Biology Laboratory, Tsinghua University, Beijing 100084, China

3. College of Life Sciences and Tianjin State Laboratory of Protein Science, Nankai University, Tianjin 300071, China

Abstract

ABSTRACT Porcine reproductive and respiratory syndrome (PRRS) virus (PRRSV), a positive-strand RNA virus that belongs to the Arteriviridae family of Nidovirales , has been identified as the causative agent of PRRS. Nsp1α is the amino (N)-terminal protein in a polyprotein encoded by the PRRSV genome and is reported to be crucial for subgenomic mRNA synthesis, presumably by serving as a transcription factor. Before functioning in transcription, nsp1α proteolytically releases itself from nsp1β. However, the structural basis for the self-releasing and biological functions of nsp1α remains elusive. Here we report the crystal structure of nsp1α of PRRSV (strain XH-GD) in its naturally self-processed form. Nsp1α contains a ZF domain (which may be required for its biological function), a papain-like cysteine protease (PCP) domain with a zinc ion unexpectedly bound at the active site (which is essential for proteolytic self-release of nsp1α), and a carboxyl-terminal extension (which occupies the substrate binding site of the PCP domain). Furthermore, we determined the exact location of the nsp1α self-processing site at Cys-Ala-Met180↓Ala-Asp-Val by use of crystallographic data and N-terminal amino acid sequencing. The crystal structure also suggested an in cis self-processing mechanism for nsp1α. Furthermore, nsp1α appears to have a dimeric architecture both in solution and as a crystal, with a hydrophilic groove on the molecular surface that may be related to nsp1α's biological function. Compared with existing structure and function data, our results suggest that PRRSV nsp1α functions differently from other reported viral leader proteases, such as that of foot-and-mouth disease.

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

Reference37 articles.

1. Benfield, D., J. Collins, S. Dee, P. Halbu, H. Joo, and K. Lager. 1999. Porcine reproductive and respiratory syndrome, p. 201-232. In B. E. Straw, S. D'Allaire, W. L. Mengeling, and D. J. Taylor (ed.), Diseases of the swine, 8th ed. Iowa State University Press, Ames, IA.

2. Brunger, A. T., P. D. Adams, G. M. Clore, W. L. DeLano, P. Gros, R. W. Grosse-Kunstleve, J. S. Jiang, J. Kuszewski, M. Nilges, N. S. Pannu, R. J. Read, L. M. Rice, T. Simonson, and G. L. Warren. 1998. Crystallography & NMR system: a new software suite for macromolecular structure determination. Acta Crystallogr. D54:905-921.

3. Equine arteritis virus is not a togavirus but belongs to the coronaviruslike superfamily

4. Emsley, P., and K. Cowtan. 2004. Coot: model-building tools for molecular graphics. Acta Crystallogr. D.60:2126-2132.

5. Gorbalenya, A. E., L. Enjuanes, J. Ziebuhr, and E. J. Snijder. 2006. Nidovirales: evolving the largest RNA virus genome. Virus Res.117:17-37.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3