Both Virus and Tumor Necrosis Factor Alpha Are Critical for Endothelium Damage in a Mouse Model of Dengue Virus-Induced Hemorrhage

Author:

Chen Hsuen-Chin1,Hofman Florence M.2,Kung John T.3,Lin Yang-Ding1,Wu-Hsieh Betty A.1

Affiliation:

1. Graduate Institute of Immunology, National Taiwan University, College of Medicine, Taipei, Taiwan, Republic of China

2. Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, California

3. Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan, Republic of China

Abstract

ABSTRACT Hemorrhage is a common clinical manifestation in dengue patients. However, the pathogenic mechanism of dengue virus (DV)-induced hemorrhage awaits clarification. We established a mouse model of DV hemorrhage using immunocompetent C57BL/6 mice by injecting DV serotype 2 strain 16681 intradermally. While inoculation of 3 × 10 9 PFU of DV induced systemic hemorrhage in all of the mice by day 3 of infection, one out of three of those injected with 4 × 10 7 to 8 × 10 7 PFU developed hemorrhage in the subcutaneous tissues. The mice that were inoculated with 4 × 10 7 to 8 × 10 7 PFU but that did not develop hemorrhage were used as a basis for comparison to explore the pathogenic mechanism of dengue hemorrhage. The results showed that mice with severe thrombocytopenia manifested signs of vascular leakage and hemorrhage. We observed that high viral titer, macrophage infiltration, and tumor necrosis factor alpha (TNF-α) production in the local tissues are three important events that lead to hemorrhage. Immunofluorescence staining revealed that DV targeted both endothelial cells and macrophages. In addition, the production of high levels of TNF-α in tissues correlated with endothelial cell apoptosis and hemorrhage. By comparing TNF-α −/− to IgH −/− , C5 −/− , and wild-type mice, we found that TNF-α was important for the development of hemorrhage. In vitro studies showed that mouse primary microvascular endothelial cells were susceptible to DV but that TNF-α enhanced DV-induced apoptosis. Our mouse model illustrated that intradermal inoculation of high titers of DV predisposes endothelial cells to be susceptible to TNF-α-induced cell death, which leads to endothelium damage and hemorrhage development. This finding highlights the contribution of the innate immune response to dengue hemorrhage.

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3