Author:
Burstein David,Gould Sven B.,Zimorski Verena,Kloesges Thorsten,Kiosse Fuat,Major Peter,Martin William F.,Pupko Tal,Dagan Tal
Abstract
ABSTRACTThe protozoan parasiteTrichomonas vaginalisis the causative agent of trichomoniasis, the most widespread nonviral sexually transmitted disease in humans. It possesses hydrogenosomes—anaerobic mitochondria that generate H2, CO2, and acetate from pyruvate while converting ADP to ATP via substrate-level phosphorylation.T. vaginalishydrogenosomes lack a genome and translation machinery; hence, they import all their proteins from the cytosol. To date, however, only 30 imported proteins have been shown to localize to the organelle. A total of 226 nuclear-encoded proteins inferred from the genome sequence harbor a characteristic short N-terminal presequence, reminiscent of mitochondrial targeting peptides, which is thought to mediate hydrogenosomal targeting. Recent studies suggest, however, that the presequences might be less important than previously thought. We sought to identify new hydrogenosomal proteins within the 59,672 annotated open reading frames (ORFs) ofT. vaginalis, independent of the N-terminal targeting signal, using a machine learning approach. Our training set included 57 gene and protein features determined for all 30 known hydrogenosomal proteins and 576 nonhydrogenosomal proteins. Several classifiers were trained on this set to yield an import score for all proteins encoded byT. vaginalisORFs, predicting the likelihood of hydrogenosomal localization. The machine learning results were tested through immunofluorescence assay and immunodetection in isolated cell fractions of 14 protein predictions using hemagglutinin constructs expressed under the homologous SCSα promoter in transiently transformedT. vaginaliscells. Localization of 6 of the 10 top predicted hydrogenosome-localized proteins was confirmed, and two of these were found to lack an obvious N-terminal targeting signal.
Publisher
American Society for Microbiology
Subject
Molecular Biology,General Medicine,Microbiology
Cited by
25 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献