Affiliation:
1. Department of Medicine, University of Michigan Medical School, Ann Arbor 48109-0360, USA.
Abstract
Nitric oxide (NO) has been associated with protection against various parasitic and viral infections and may play a similar role in bacterial infections. We studied the role of NO in host defense against Klebsiella pneumoniae infection in the lung. Initial studies demonstrated a time-dependent increase in NO production of the lungs of CBA/J mice following the intratracheal administration of K. pneumoniae (7 x 10(2) CFU). To assess the role of NO in Klebsiella pneumonia, mice were treated intraperitoneally with either L-NAME (N-omega-nitro-L-arginine methylester), a competitive inhibitor of NO synthesis, or D-NAME, an inert enantiomer. The treatment of Klebsiella-infected mice with L-NAME resulted in a 10- and 46-fold increase in K. pneumoniae CFU in lungs and blood, respectively, at 48 h post-K. pneumoniae inoculation compared to treatment of mice with D-NAME. In addition, a greater-than-twofold increase in mortality was evident in L-NAME-treated mice compared to the mortality in control animals. No significant difference in bronchoalveolar lavage inflammatory cell profiles was noted between L-NAME- and D-NAME-treated mice with Klebsiella pneumonia. Interestingly, increased levels of tumor necrosis factor, gamma interferon, macrophage inflammatory protein 1alpha (MIP-1alpha), and MIP-2 mRNA and protein were noted in infected mice treated with L-NAME compared to the levels in mice treated with D-NAME. Importantly, the in vitro incubation of murine alveolar macrophages with L-NAME, but not with D-NAME, resulted in a significant impairment in both the phagocytosis and killing of K. pneumoniae. In total, these results suggest that NO plays a critical role in antibacterial host defense against K. pneumoniae, in part by regulating macrophage phagocytic and microbicidal activity.
Publisher
American Society for Microbiology
Subject
Infectious Diseases,Immunology,Microbiology,Parasitology
Cited by
127 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献