Diel Rhythms in Ribulose-1,5-Bisphosphate Carboxylase/Oxygenase and Glutamine Synthetase Gene Expression in a Natural Population of Marine Picoplanktonic Cyanobacteria ( Synechococcus spp.)

Author:

Wyman Michael1

Affiliation:

1. Department of Biological Sciences, University of Stirling, Stirling FK9 4LA, United Kingdom

Abstract

ABSTRACT Diel periodicity in the expression of key genes involved in carbon and nitrogen assimilation in marine Synechococcus spp. was investigated in a natural population growing in the surface waters of a cyclonic eddy in the northeast Atlantic Ocean. Synechococcus sp. cell concentrations within the upper mixed layer showed a net increase of three- to fourfold during the course of the experiment (13 to 22 July 1991), the population undergoing approximately one synchronous division per day. Consistent with the observed temporal pattern of phycoerythrin (CpeBA) biosynthesis, comparatively little variation was found in cpeBA mRNA abundance during either of the diel cycles investigated. In marked contrast, the relative abundance of transcripts originating from the genes encoding the large subunit of ribulose bisphosphate carboxylase/oxygenase ( rbcL ) and glutamine synthetase ( glnA ) showed considerable systematic temporal variation and oscillated during the course of each diel cycle in a reciprocal rhythm. Whereas activation of rbcL transcription was clearly not light dependent, expression of glnA appeared sensitive to endogenous changes in the physiological demands for nitrogen that arise as a natural consequence of temporal periodicity in photosynthetic carbon assimilation. The data presented support the hypothesis that a degree of temporal separation may exist between the most active periods of carbon and nitrogen assimilation in natural populations of marine Synecoccoccus spp.

Publisher

American Society for Microbiology

Subject

Ecology,Applied Microbiology and Biotechnology,Food Science,Biotechnology

Reference71 articles.

1. Novel phycoerythrins in marine Synechococcus spp.: characterisation, and evolutionary and ecological implications.;Alberte R. S.;Plant Physiol.,1984

2. Effect of Light on the Cell Cycle of a Marine Synechococcus Strain

3. Ausubel F. M. Brent R. Kingston R. E. Moore D. D. Siedman J. G. Smith J. A. Struhl K. Current protocols in molecular biology. 1994 John Wiley & Sons Inc. New York N.Y

4. Cell Cycle Regulation in Marine Synechococcus sp. Strains

5. Micro-algal carbon and nitrogen uptake in post-coccolithophore bloom conditions in the northeast Atlantic, July 1991.;Boyd P.;Deep-Sea Res.,1997

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3