Affiliation:
1. Institute of Food Research, Norwich Laboratory, Norwich Research Park, Colney, Norwich NR4 7UA, United Kingdom
Abstract
ABSTRACT
Refrigerated processed foods of extended durability such as cook-chill and sous-vide foods rely on a minimal heat treatment at 70 to 95°C and then storage at a refrigeration temperature for safety and preservation. These foods are not sterile and are intended to have an extended shelf life, often up to 42 days. The principal microbiological hazard in foods of this type is growth of and toxin production by nonproteolytic
Clostridium botulinum
. Lysozyme has been shown to increase the measured heat resistance of nonproteolytic
C. botulinum
spores. However, the heat treatment guidelines for prevention of risk of botulism in these products have not taken into consideration the effect of lysozyme, which can be present in many foods. In order to assess the botulism hazard, the effect of heat treatments at 70, 75, 80, 85, and 90°C combined with refrigerated storage for up to 90 days on growth from 10
6
spores of nonproteolytic
C. botulinum
(types B, E, and F) in an anaerobic meat medium containing 2,400 U of lysozyme per ml (50 μg per ml) was studied. Provided that the storage temperature was no higher than 8°C, the following heat treatments each prevented growth and toxin production during 90 days; 70°C for ≥2,545 min, 75°C for ≥463 min, 80°C for ≥230 min, 85°C for ≥84 min, and 90°C for ≥33.5 min. A factorial experimental design allowed development of a predictive model that described the incubation time required before the first sample showed growth, as a function of heating temperature (70 to 90°C), period of heat treatment (up to 2,545 min), and incubation temperature (5 to 25°C). Predictions from the model provided a valid description of the data used to generate the model and agreed with observations made previously.
Publisher
American Society for Microbiology
Subject
Ecology,Applied Microbiology and Biotechnology,Food Science,Biotechnology
Cited by
36 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献