Abstract
Data are presented which indicate that the repression of pur gene expression seen after the addition of preformed purines to cultures of Salmonella typhimurium is the consequence of the presence or the formation of the purine bases, hypoxanthine and guanine. This conclusion is based on the following observations. First, it was impossible to find a correlation between the size of any individual purine nucleotide pool and the level of the first four enzymes in the de novo biosynthetic pathway. Second, adenine plus guanosine served as a perfect source of purine nucleotides, but their presence caused no repression of pur gene expression if the cells lacked purine nucleoside phosphorylase activity. This enzyme is needed to convert adenine and guanosine to hypoxanthine and guanine, but not for their conversion to nucleotides. Third, addition of guanine to a strain lacking guanine phosphoribosyltransferase (gpt) resulted in a repression of the level of the purine de novo biosynthetic enzymes, a reduction of the growth rate, and a fall in the pools of ATP and GTP. Addition of hypoxanthine to a strain lacking hypoxanthine phosphoribosyltransferase (hpt) had a similar, although weaker, effect. If the cells lacked both hypoxanthine and guanine phosphoribosyltransferases (hpt gpt), their basal level of the purine de novo biosynthetic enzymes was repressed in minimal medium. Such cells grow slower than wild-type cells and excrete purines, probably due to the inability to salvage endogenously formed hypoxanthine and guanine.
Publisher
American Society for Microbiology
Subject
Molecular Biology,Microbiology
Reference29 articles.
1. Relationships between intracellular contents of nucleotides and 5-phosphoribosyl 1-pyrophosphate in Escherichia coli;Bagnara A. S.;Eur. J. Biochem.,1973
2. Location on the chromosome of Salmonella typhimurium of genes governing pyrimidine metabolism;Beck C. F.;Mol. Gen. Genet.,1971
3. Genetic separation of purine transport from phosphoribosyltransferase activity in Salmonella typhimurium;Benson C. E.;J. Gen. Microbiol.,1980
4. Synthesis and breakdown of mRNA without protein synthesis;EdlIn G.;J. Mol. Biol.,1966
5. Microbial models and regulatory elements in the control of purine metabolism;Gots J. S.;Ciba Found. Symp.,1977
Cited by
43 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献