Abstract
The ability of Staphylococcus epidermidis to transfer antimicrobial resistance to Staphylococcus aureus was tested by mixed culture on filter membranes. Two of six clinical isolates examined were able to transfer resistance to S. aureus strains 879R4RF, RN450RF, and UM1385RF. Subsequent S.aureus transconjugants resulting from matings with S. epidermidis donors were able to serve as donors to other S. aureus strains at similar frequencies. Cell-free and mitomycin C-induced filtrates of donors and transconjugants showed no plaque-forming ability. Addition of DNase I, citrate, EDTA, calcium chloride, and human sera to mating mixes and agar showed no effect on transfer. Nonviable donor cells were unable to transfer resistance and transfer did not occur at 4 degrees C. Cell-to-cell contact was required since transfer did not occur in broth or when filters of donor and recipient, respectively, were placed back-to-back so cells were not in direct contact. Analysis of DNA from S. epidermidis isolate UM899, its subsequent S. aureus transconjugants, and cured derivatives demonstrated that all resistance markers which transferred resided on plasmids. Mating experiments suggested a central role for the gentamicin plasmid pAM899-1 in the transfer process. It is concluded that our results are consistent with a conjugative transfer of resistance from S. epidermidis to S. aureus analogous to plasmid transfer demonstrated in streptococcal species for plasmids such as pAM beta 1. This represents a novel mechanism for gene exchange among staphylococci.
Publisher
American Society for Microbiology
Subject
Molecular Biology,Microbiology
Reference29 articles.
1. Physical mapping of plasmid pDB111: a potential vector plasmid for molecular cloning in Streptococci;Behnke D.;Plasmid,1980
2. Plasmids, drug resistance, and gene transfer in the genus Streptococcus;Clewell D. B.;Microbiol. Rev.,1981
3. Common Rplasmids in Staphylococcus aureus and Staphylococcus epidermidis during a nosocomial Staphylococcus aureus outbreak;Coben M.;Antimicrob. Agents Chemother.,1982
4. Transduction of methicillin resistance in Staphylococcus aureus dependent on an unusual specificity of the recipient strain;Coben S.;J. Bacteriol.,1970
5. Transferability of macrolide, lincomycin, and streptogramin resistances between group A, B, and D streptococci, Streptococcus pneumoniae, and Staphylococcus aureus;Engel H. W. B.;J. Bacteriol.,1980
Cited by
164 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献