Metabolic Engineering of Escherichia coli for the Synthesis of the Plant Polyphenol Pinosylvin

Author:

van Summeren-Wesenhagen Philana Veronica,Marienhagen Jan

Abstract

ABSTRACTPlant polyphenols are of great interest for drug discovery and drug development since many of these compounds have health-promoting activities as treatments against various diseases, such as diabetes, cancer, or heart diseases. However, the limited availability of polyphenols represents a major obstacle to clinical applications that must be overcome. In comparison to the quantities of these compounds obtained by isolation from natural sources or costly chemical synthesis, the microbial production of these compounds could provide sufficient quantities from inexpensive substrates. In this work, we describe the development of anEscherichia coliplatform strain for the production of pinosylvin, a stilbene found in the heartwood of pine trees which could aid in the treatment of various cancers and cardiovascular diseases. Initially, several configurations of the three-step biosynthetic pathway to pinosylvin were constructed from a set of two different enzymes for each enzymatic step. After optimization of gene expression and evaluation of different construct environments, low pinosylvin concentrations up to 3 mg/liter could be detected. Analysis of the precursor supply and a comparative analysis of the intracellular pools of pathway intermediates and product identified the limited malonyl coenzyme A (malonyl-CoA) availability and low stilbene synthase activity in the heterologous host to be the main bottlenecks during pinosylvin production. Addition of cerulenin for increasing intracellular malonyl-CoA pools and thein vivoevolution of the stilbene synthase fromPinus strobusfor improved activity inE. coliproved to be the keys to elevated product titers. These measures allowed product titers of 70 mg/liter pinosylvin from glucose, which could be further increased to 91 mg/liter by the addition ofl-phenylalanine.

Publisher

American Society for Microbiology

Subject

Ecology,Applied Microbiology and Biotechnology,Food Science,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3