Cross Kingdom Functional Conservation of the Core Universally Conserved Threonylcarbamoyladenosine tRNA Synthesis Enzymes

Author:

Thiaville Patrick C.1234,El Yacoubi Basma4,Perrochia Ludovic3,Hecker Arnaud5,Prigent Magali3,Thiaville Jennifer J.4,Forterre Patrick3,Namy Olivier3,Basta Tamara3,de Crécy-Lagard Valérie24

Affiliation:

1. Genetics and Genomics Graduate Program, University of Florida, Gainesville, Florida, USA

2. University of Florida Genetics Institute, Gainesville, Florida, USA

3. Institut de Génétique et Microbiologie, Université of Paris-Sud, Orsay, France

4. Department of Microbiology and Cell Science, University of Florida, Gainesville, Florida, USA

5. Université de Lorraine, UMR 1136 INRA/Université de Lorraine Interactions Arbres-Microorganismes, Labex ARBRE, FR EFABA, Faculté des Sciences, Vandoeuvre, France

Abstract

ABSTRACT Threonylcarbamoyladenosine (t 6 A) is a universal modification located in the anticodon stem-loop of tRNAs. In yeast, both cytoplasmic and mitochondrial tRNAs are modified. The cytoplasmic t 6 A synthesis pathway was elucidated and requires Sua5p, Kae1p, and four other KEOPS complex proteins. Recent in vitro work suggested that the mitochondrial t 6 A machinery of Saccharomyces cerevisiae is composed of only two proteins, Sua5p and Qri7p, a member of the Kae1p/TsaD family (L. C. K. Wan et al., Nucleic Acids Res. 41:6332–6346, 2013, http://dx.doi.org/10.1093/nar/gkt322 ). Sua5p catalyzes the first step leading to the threonyl-carbamoyl-AMP intermediate (TC-AMP), while Qri7 transfers the threonyl-carbamoyl moiety from TC-AMP to tRNA to form t 6 A. Qri7p localizes to the mitochondria, but Sua5p was reported to be cytoplasmic. We show that Sua5p is targeted to both the cytoplasm and the mitochondria through the use of alternative start sites. The import of Sua5p into the mitochondria is required for this organelle to be functional, since the TC-AMP intermediate produced by Sua5p in the cytoplasm is not transported into the mitochondria in sufficient amounts. This minimal t 6 A pathway was characterized in vitro and, for the first time, in vivo by heterologous complementation studies in Escherichia coli . The data revealed a potential for TC-AMP channeling in the t 6 A pathway, as the coexpression of Qri7p and Sua5p is required to complement the essentiality of the E. coli tsaD mutant. Our results firmly established that Qri7p and Sua5p constitute the mitochondrial pathway for the biosynthesis of t 6 A and bring additional advancement in our understanding of the reaction mechanism.

Publisher

American Society for Microbiology

Subject

Molecular Biology,General Medicine,Microbiology

Reference41 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3