Abstract
Inhibition of ribonucleic acid synthesis in Escherichia coli 15 TAU bar with rifampin or streptolydigin leads to large increases in the sizes of cellular ribonucleoside and deoxyribonucleoside triphosphate pools. Inhibition of protein synthesis leads to increases in the sizes of all nucleoside triphosphate pools except the guanosine triphosphate and deoxyguanosine triphosphate pools; a decrease in the size of the latter pool may be responsible for the slowing of deoxyribonucleic acid replication fork movement observed in this strain in the absence of protein synthesis. Analysis of the kinetics of incorporation of labeled precursors into deoxyribonucleic acid and into cellular pools suggests that functional compartmentation of nucleotide pools exists, allowing the incorporation of exogenously supplied precursors into deoxyribonucleic acid without prior equilibration with the cellular pools.
Publisher
American Society for Microbiology
Subject
Molecular Biology,Microbiology
Cited by
30 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献