Next-Generation Sequencing and Comparative Analysis of Sequential Outbreaks Caused by Multidrug-Resistant Acinetobacter baumannii at a Large Academic Burn Center

Author:

Kanamori Hajime12,Parobek Christian M.34,Weber David J.125,van Duin David1,Rutala William A.12,Cairns Bruce A.36,Juliano Jonathan J.145

Affiliation:

1. Division of Infectious Diseases, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA

2. Hospital Epidemiology, University of North Carolina Health Care, Chapel Hill, North Carolina, USA

3. University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA

4. Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA

5. Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA

6. North Carolina Jaycee Burn Center, University of North Carolina Health Care, Chapel Hill, North Carolina, USA

Abstract

ABSTRACT Next-generation sequencing (NGS) analysis has emerged as a promising molecular epidemiological method for investigating health care-associated outbreaks. Here, we used NGS to investigate a 3-year outbreak of multidrug-resistant Acinetobacter baumannii (MDRAB) at a large academic burn center. A reference genome from the index case was generated using de novo assembly of PacBio reads. Forty-six MDRAB isolates were analyzed by pulsed-field gel electrophoresis (PFGE) and sequenced using an Illumina platform. After mapping to the index case reference genome, four samples were excluded due to low coverage, leaving 42 samples for further analysis. Multilocus sequence types (MLST) and the presence of acquired resistance genes were also determined from the sequencing data. A transmission network was inferred from genomic and epidemiological data using a Bayesian framework. Based on single-nucleotide variant (SNV) differences, this MDRAB outbreak represented three sequential outbreaks caused by distinct clones. The first and second outbreaks were caused by sequence type 2 (ST2), while the third outbreak was caused by ST79. For the second outbreak, the MLST and PFGE results were discordant. However, NGS-based SNV typing detected a recombination event and consequently enabled a more accurate phylogenetic analysis. The distribution of resistance genes varied among the three outbreaks. The first- and second-outbreak strains possessed a bla OXA-23-like group, while the third-outbreak strains harbored a bla OXA-40-like group. NGS-based analysis demonstrated the superior resolution of outbreak transmission networks for MDRAB and provided insight into the mechanisms of strain diversification between sequential outbreaks through recombination.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Pharmacology (medical),Pharmacology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3