Downregulation of Autolysin-Encoding Genes by Phage-Derived Lytic Proteins Inhibits Biofilm Formation in Staphylococcus aureus

Author:

Fernández Lucía1,González Silvia1,Campelo Ana Belén1,Martínez Beatriz1,Rodríguez Ana1,García Pilar1

Affiliation:

1. Instituto de Productos Lácteos de Asturias (IPLA-CSIC), Asturias, Spain

Abstract

ABSTRACT Phage-derived lytic proteins are a promising alternative to conventional antimicrobials. One of their most interesting properties is that they do not readily select for resistant strains, which is likely due to the fact that their targets are essential for the viability of the bacterial cell. Moreover, genetic engineering allows the design of new “tailor-made” proteins that may exhibit improved antibacterial properties. One example of this is the chimeric protein CHAPSH3b, which consists of a catalytic domain from the virion-associated peptidoglycan hydrolase of phage vB_SauS-phiIPLA88 (HydH5) and the cell wall binding domain of lysostaphin. CHAPSH3b had previously shown the ability to kill Staphylococcus aureus cells. Here, we demonstrate that this lytic protein also has potential for the control of biofilm-embedded S. aureus cells. Additionally, subinhibitory doses of CHAPSH3b can decrease biofilm formation by some S. aureus strains. Transcriptional analysis revealed that exposure of S. aureus cells to this enzyme leads to the downregulation of several genes coding for bacterial autolysins. One of these proteins, namely, the major autolysin AtlA, is known to participate in staphylococcal biofilm development. Interestingly, an atl mutant strain did not display inhibition of biofilm development when grown at subinhibitory concentrations of CHAPSH3b, contrary to the observations made for the parental and complemented strains. Also, deletion of atl led to low-level resistance to CHAPSH3b and the endolysin LysH5. Overall, our results reveal new aspects that should be considered when designing new phage-derived lytic proteins aimed for antimicrobial applications.

Funder

Ministry of Science and Innovation, Spain

Principality of Asturias (Spain) and Marie Curie Actions

Principality of Asturias (Spain) and FEDER EU Funds

Ministerio de Economía y Competitividad

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Pharmacology (medical),Pharmacology

Cited by 27 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3