The Role of PerR in O 2 -Affected Gene Expression of Clostridium acetobutylicum

Author:

Hillmann Falk1,Döring Christina2,Riebe Oliver1,Ehrenreich Armin2,Fischer Ralf-Jörg1,Bahl Hubert1

Affiliation:

1. Abteilung Mikrobiologie, Institut für Biowissenschaften, Universität Rostock, Albert Einstein Str. 3, D-18051 Rostock, Germany

2. Abteilung Allgemeine Mikrobiologie, Institut für Mikrobiologie und Genetik, Georg-August-Universität Göttingen, Grisebachstr. 8, D-37077 Göttingen, Germany

Abstract

ABSTRACT In the strict anaerobe Clostridium acetobutylicum , a PerR-homologous protein has recently been identified as being a key repressor of a reductive machinery for the scavenging of reactive oxygen species and molecular O 2 . In the absence of PerR, the full derepression of its regulon resulted in increased resistance to oxidative stress and nearly full tolerance of an aerobic environment. In the present study, the complementation of a Bacillus subtilis PerR mutant confirmed that the homologous protein from C. acetobutylicum acts as a functional peroxide sensor in vivo. Furthermore, we used a transcriptomic approach to analyze gene expression in the aerotolerant PerR mutant strain and compared it to the O 2 stimulon of wild-type C. acetobutylicum . The genes encoding the components of the alternative detoxification system were PerR regulated. Only few other targets of direct PerR regulation were identified, including two highly expressed genes encoding enzymes that are putatively involved in the central energy metabolism. All of them were highly induced when wild-type cells were exposed to sublethal levels of O 2 . Under these conditions, C. acetobutylicum also activated the repair and biogenesis of DNA and Fe-S clusters as well as the transcription of a gene encoding an unknown CO dehydrogenase-like enzyme. Surprisingly few genes were downregulated when exposed to O 2 , including those involved in butyrate formation. In summary, these results show that the defense of this strict anaerobe against oxidative stress is robust and by far not limited to the removal of O 2 and its reactive derivatives.

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

Cited by 55 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3